рд╣рд┐рдВрджреА

The Circumference of Two Circles Are in Ratio 2:3. Find the Ratio of Their Areas - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

The circumference of two circles are in ratio 2:3. Find the ratio of their areas

рдЙрддреНрддрд░

Let radius of two circles be ЁЭСЯ1 and ЁЭСЯ2 then their circumferences will be 2ЁЭЬЛЁЭСЯ1 : 2ЁЭЬЛЁЭСЯ2
= ЁЭСЯ1: ЁЭСЯ2

But circumference ratio is given as 2 : 3

ЁЭСЯ1: ЁЭСЯ2 = 2: 3

Ratio of areas = ЁЭЬЛЁЭСЯ22: ЁЭЬЛЁЭСЯ22

`= (r_1/r_2)^2`

`=(12/3)^2`

`= 4/9`

= 4:9

∴ ЁЭСЯЁЭСОЁЭСбЁЭСЦЁЭСЬ ЁЭСЬЁЭСУ ЁЭСОЁЭСЯЁЭСТЁЭСОЁЭСа = 4 тИ╢ 9

 

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 13: Areas Related to Circles - Exercise 13.1 [рдкреГрд╖реНрда резреи]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 13 Areas Related to Circles
Exercise 13.1 | Q 9 | рдкреГрд╖реНрда резреи

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [4]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×