हिंदी

A Chord of a Circle of Radius 30 Cm Makes an Angle of 60° at the Centre of the Circle. Find the Areas of the Minor Major Segments. - Mathematics

Advertisements
Advertisements

प्रश्न

A chord of a circle of radius 30 cm makes an angle of 60° at the centre of the circle. Find the areas of the minor major segments.

योग

उत्तर

Let the chord be AB. The ends of the chord are connected to the centre of the circle O to give the triangle OAB.

OAB is an isosceles triangle. The angle at the centre is 60°

Area of the triangle `=1/2(30)^2  sin 60^circ = 450xxsqrt(3)/2 = 389.25  "cm"^2`

Area of the sector OACBO` =60/360xxpixx30xx30 = 150pi = 471  "cm"^2`

Area of the minor segment = Area of the sector - Area of the minor segment 

= (π × 30 × 30)  - 81.29

= 2744.71 cm2  

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Area of Circle, Sector and Segment - Exercise 18A [पृष्ठ ८३२]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 18 Area of Circle, Sector and Segment
Exercise 18A | Q 18 | पृष्ठ ८३२

वीडियो ट्यूटोरियलVIEW ALL [4]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×