рд╣рд┐рдВрджреА

The Curved Surface Area of a Cone is 4070 Cm2 and Its Diameter is 70 Cm. What is Its Slant Height? (Use It ЁЭЬЛ = 22/7). - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

The curved surface area of a cone is 4070 cm2 and its diameter is 70 cm. What is its slant height? (Use it ЁЭЬЛ = 22/7).

рдЙрддреНрддрд░

Given diameter= 70 cm 

⇒ 2r = 70 cm 

⇒ r=35cm 

Now, curved surface area = `4070cm^2`

⇒ `pirl=4070` 

Where r=radius of the cone 

l=slant height of the cone 

∴ `pirl=4070` 

⇒ `22/7xx35xxl=4070` 

⇒`l=(4070xx7)/(22xx35)=37cm` 

∴ Slant height of the cone= 37 cm

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 20: Surface Areas and Volume of A Right Circular Cone - Exercise 20.1 [рдкреГрд╖реНрда рео]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 9
рдЕрдзреНрдпрд╛рдп 20 Surface Areas and Volume of A Right Circular Cone
Exercise 20.1 | Q 9 | рдкреГрд╖реНрда рео

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [1]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

Find the curved surface area of a cone, if its slant height is 60 cm and the radius of its base is 21 cm.  


The diameters of two cones are equal. If their slant heights are in the ratio 5 : 4, find the ratio of their curved surfaces. 


Find the volume of a right circular cone with: 

radius 3.5 cm, height 12 cm 


The volume of a right circular cone is 9856 cm3. If the diameter of the base is 28 cm, find:
(i) height of the cone (ii) slant height of the cone (iii) curved surface area of the cone. 


The radius and the height of a right circular cone are in the ratio 5 : 12 and its volume is 2512 cubic cm. Find the radius and slant height of the cone. (Take π = 3.14) 


The diameter of two cones are equal. If their slant heights are in the ratio 5 : 4, find the ratio of their curved surface areas. 


From a rectangular solid of metal 42 cm by 30 cm by 20 cm, a conical cavity of diameter 14 cm and depth 24 cm is drilled out. Find :

  1. the surface area of remaining solid,
  2. the volume of remaining solid,
  3. the weight of the material drilled out if it weighs 7 gm per cm3.

The volume of a conical tent is 1232 m3 and the area of the base floor is 154 m2. Calculate the: height of the tent.


The internal and external diameters of a hollow hemi-spherical vessel are 21 cm and 28 cm respectively. Find: total surface area.


A cloth having an area of 165 m2 is shaped into the form of a conical tent of radius 5 m. How many students can sit in the tent if a student, on an average, occupies `5/7` m2 on the ground?


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×