हिंदी

The Cylindrical Piece of the Cork of Density of Base Area A And Height H Floats in a Liquid of Density `Rho_1`. the Cork is Depressed Slightly and Then Released. Show that the Cork Oscillates up and Down Simple Harmonically with a Periodwhere ρ Is the Density of Cork. (Ignore Damping Due to Viscosity of the Liquid). - Physics

Advertisements
Advertisements

प्रश्न

The cylindrical piece of the cork of density of base area and height floats in a liquid of density `rho_1`. The cork is depressed slightly and then released. Show that the cork oscillates up and down simple harmonically with a period

`T = 2pi sqrt((hrho)/(rho_1g)` 

where ρ is the density of cork. (Ignore damping due to viscosity of the liquid).

उत्तर १

Base area of the cork = A

Height of the cork = h

Density of the liquid = `rho_1`

Density of the cork = ρ

In equilibrium:

Weight of the cork = Weight of the liquid displaced by the floating cork

Let the cork be depressed slightly by x. As a result, some extra water of a certain volume is displaced. Hence, an extra up-thrust acts upward and provides the restoring force to the cork.

Up-thrust = Restoring force, F = Weight of the extra water displaced

F = ­–(Volume × Density × g)

Volume = Area × Distance through which the cork is depressed

Volume = Ax

∴ F = – A x `rho_1` g … (i)

According to the force law:

F = kx

`k = F/x`

Where, k is a constant

`k = F/x = -Arho_1g`  ...(ii)

The time period of the oscillations of the cork:

`T = 2pi sqrt(m/k)`   ...(iii)

Where

m = Mass of the cork

= Volume of the cork × Density

= Base area of the cork × Height of the cork × Density of the cork

Ahρ

Hence, the expression for the time period becomes:

`T = 2pi sqrt((Ahrho)/(Arho_1g)) = 2 pi sqrt((hrho)/(rho_1g)`

shaalaa.com

उत्तर २

Say, initially in equilibrium, y  height of cylinder is inside the liquid. Then,

Weight of the cylinder = upthrust due to liquid displaced

`:. Ahrhog = Ayrho_1g`

When the cork cylinder is depressed slightly by `triangle y` and released, a restoring force, equal to additional upthrust, act on it. The restoring force is

`F =  A(y + triangle y) rho_1 g - Ayrho_1g = Arho_1g triangle y`

:. Acceleration, `a = F/m = (Arho_1g triangle y)/(Ahrho) = (rho_1g)/(hrho). triangle y `  and the acceleration is directed in a  direction opposite to `triangle y`. Obviously, as `a prop - triangle y`, the motion of cork cylinder is SHM, whose time period is given by

`T = 2pi sqrt("displacement"/"accelertion")`

`=2pi sqrt((triangle y)/a)`

`= 2pi sqrt((hrho)/(rho_1g))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Oscillations - Exercises [पृष्ठ ३६१]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
अध्याय 14 Oscillations
Exercises | Q 18 | पृष्ठ ३६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the metal bob of a simple pendulum is replaced by a wooden bob of the same size, then its time period will.....................

  1. increase
  2. remain same
  3. decrease
  4. first increase and then decrease.

A spring having with a spring constant 1200 N m–1 is mounted on a horizontal table as shown in Fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.


let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of the x-axis. Give as a function of time t for the oscillating mass if at the moment we start the stopwatch (= 0), the mass is

(a) at the mean position,

(b) at the maximum stretched position, and

(c) at the maximum compressed position.

In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?


Answer the following questions:

A time period of a particle in SHM depends on the force constant and mass of the particle: `T = 2pi sqrt(m/k)` A simple pendulum executes SHM approximately. Why then is the time 

 


Answer the following questions:

A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?


A simple pendulum of length and having a bob of mass is suspended in a car. The car is moving on a circular track of radius with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?


A clock regulated by seconds pendulum, keeps correct time. During summer, length of pendulum increases to 1.005 m. How much will the clock gain or loose in one day?

(g = 9.8 m/s2 and π = 3.142)


If the particle starts its motion from mean position, the phase difference between displacement and acceleration is ______.


If the maximum velocity and acceleration of a particle executing SHM are equal in magnitude, the time period will be ______.


In the given figure, a mass M is attached to a horizontal spring which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it. The new amplitude of oscillation will be:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×