हिंदी

The demand function of a commodity at price P is given as, D = 40-5P8. Check whether it is increasing or decreasing function. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The demand function of a commodity at price P is given as, D = `40 - "5P"/8`. Check whether it is increasing or decreasing function.

योग

उत्तर

Given, the demand function is

D = `40 - "5P"/8`

∴ `"dD"/"dP" = 0 - 5/8(1) = (-5)/8 < 0`

∴ The given function is a decreasing function.

shaalaa.com
Application of Derivatives to Economics
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Applications of Derivatives - Exercise 4.4 [पृष्ठ ११२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Applications of Derivatives
Exercise 4.4 | Q 1 | पृष्ठ ११२

संबंधित प्रश्न

Find the marginal revenue if the average revenue is 45 and elasticity of demand is 5.


A manufacturing company produces x items at the total cost of Rs (180 + 4x). The demand function of this product is P = (240 − x). Find x for which profit is increasing.


The total cost of manufacturing x articles C = 47x + 300x2 – x4 . Find x, for which average cost is decreasing


If the demand function is D = `((p + 6)/(p − 3))`, find the elasticity of demand at p = 4.


Find the price for the demand function D = `((2"p" + 3)/(3"p" - 1))`, when elasticity of demand is `11/14`.


If the demand function is D = 50 – 3p – p2. Find the elasticity of demand at p = 5 comment on the result


If the demand function is D = 50 – 3p – p2. Find the elasticity of demand at p = 2 comment on the result


For the demand function D = 100 – `p^2/2`. Find the elasticity of demand at p = 10 and comment on the results.


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which profit is increasing.


Find MPC, MPS, APC and APS, if the expenditure Ec of a person with income I is given as Ec = (0.0003) I2 + (0.075) I ; When I = 1000.


If the average revenue is 45 and elasticity of demand is 5, then marginal revenue is ______.


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which revenue is increasing

Solution: Total cost C = 40 + 2x and Price p = 120 – x

Revenue R = `square`

Differentiating w.r.t. x,

∴ `("dR")/("d"x) = square`

Since Revenue is increasing,

∴ `("dR")/("d"x)` > 0

∴ Revenue is increasing for `square`


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which elasticity of demand for price ₹ 80.

Solution: Total cost C = 40 + 2x and Price p = 120 – x

p = 120 – x

∴ x = 120 – p

Differentiating w.r.t. p,

`("d"x)/("dp")` = `square`

∴ Elasticity of demand is given by η = `- "P"/x*("d"x)/("dp")`

∴ η = `square`

When p = 80, then elasticity of demand η = `square`


Complete the following activity to find MPC, MPS, APC and APS, if the expenditure Ec of a person with income I is given as:

Ec = (0.0003)I2 + (0.075)I2

when I = 1000


If elasticity of demand η = 0 then demand is ______.


If 0 < η < 1 then the demand is ______.


In a factory, for production of Q articles, standing charges are ₹500, labour charges are ₹700 and processing charges are 50Q. The price of an article is 1700 - 3Q. Complete the following activity to find the values of Q for which the profit is increasing.

Solution: Let C be the cost of production of Q articles.

Then C = standing charges + labour charges + processing charges

∴ C = `square` 

Revenue R = P·Q = (1700 - 3Q)Q = 1700Q- 3Q2

Profit `pi = R - C = square`

 Differentiating w.r.t. Q, we get

`(dpi)/(dQ) = square`

If profit is increasing , then `(dpi)/(dQ) >0`

∴ `Q < square` 

Hence, profit is increasing for `Q < square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×