हिंदी

If the demand function is D = 50 – 3p – p2. Find the elasticity of demand at p = 2 comment on the result - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If the demand function is D = 50 – 3p – p2. Find the elasticity of demand at p = 2 comment on the result

योग

उत्तर

Given, demand function is D = 50 – 3p – p2 

∴ `"dD"/"dp" = 0 - 3 - 2"p"`

= `- 3 - 2"p"`

Elasticity of demand is given by

`eta =- ("p")/"D" * "dD"/"dp"`

∴ `eta = (-"p")/(50 - 3"p" - "p"^2) * (- 3 - 2"p")`

∴ `eta = (p(3 + 2p))/(50 - 3p - p^2)`

(i) When p = 5

`eta = (5(3 + 2xx 5))/(50 - 3(5) - (5)^2) = (5xx13)/(50 - 15 - 25)`

= `65/10 = 6.5`

Since η > 1 the demand is elastic

(ii) When p = 2 then,

`eta = (2(3 + 2 xx 2))/(50 - 3(2) - (2)^2) = (2xx7)/(50 -6 - 4)`

 = `14/40 = 7/20`

Since, < η < 1, the demand is inelastic.

shaalaa.com
Application of Derivatives to Economics
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.4: Applications of Derivatives - Q.4

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Applications of Derivatives
Exercise 4.4 | Q 10.2 | पृष्ठ ११३

संबंधित प्रश्न

A manufacturing company produces x items at the total cost of Rs (180 + 4x). The demand function of this product is P = (240 − x). Find x for which profit is increasing.


Find the elasticity of demand, if the marginal revenue is 50 and price is Rs 75.


The demand function of a commodity at price P is given as, D = `40 - "5P"/8`. Check whether it is increasing or decreasing function.


The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 – x). Find x for which revenue is increasing


The total cost of manufacturing x articles C = 47x + 300x2 – x4 . Find x, for which average cost is decreasing


Find the price, if the marginal revenue is 28 and elasticity of demand is 3.


If the demand function is D = `((p + 6)/(p − 3))`, find the elasticity of demand at p = 4.


For the demand function D = 100 – `p^2/2`. Find the elasticity of demand at p = 10 and comment on the results.


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which profit is increasing.


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which also find an elasticity of demand for price 80.


If the marginal revenue is 28 and elasticity of demand is 3, then the price is ______.


If 0 < η < 1, then the demand is ______.


If the average revenue is 45 and elasticity of demand is 5, then marginal revenue is ______.


State whether the following statement is True or False:  

If the marginal revenue is 50 and the price is ₹ 75, then elasticity of demand is 4


The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 − 𝑥). Find x for which profit is increasing


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which elasticity of demand for price ₹ 80.

Solution: Total cost C = 40 + 2x and Price p = 120 – x

p = 120 – x

∴ x = 120 – p

Differentiating w.r.t. p,

`("d"x)/("dp")` = `square`

∴ Elasticity of demand is given by η = `- "P"/x*("d"x)/("dp")`

∴ η = `square`

When p = 80, then elasticity of demand η = `square`


If 0 < η < 1 then the demand is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×