हिंदी

The density of a non-uniform rod of length 1 m is given by ρ(x) = a(1 + bx2) where a and b are constants and 0 ≤ x ≤ 1. The centre of mass of the rod will be at ______. - Physics

Advertisements
Advertisements

प्रश्न

The density of a non-uniform rod of length 1 m is given by ρ(x) = a(1 + bx2) where a and b are constants and 0 ≤ x ≤ 1. The centre of mass of the rod will be at ______.

विकल्प

  • `(3(2 + b))/(4(3 + b))`

  • `(4(2 + b))/(3(3 + b))`

  • `(3(3 + b))/(4(2 + b))`

  • `(4(3 + b))/(3(2 + b))`

MCQ
रिक्त स्थान भरें

उत्तर

The density of a non-uniform rod of length 1 m is given by ρ(x) = a(1 + bx2) where a and b are constants and 0 ≤ x ≤ 1. The centre of mass of the rod will be at `underline((3(2 + b))/(4(3 + b)))`.

Explanation:

Density is given as ρ(x) = a(1 + bx2)

Where a and b are constant and 0 ≤ x ≤ 1

Let b → 0, in this case ρ(x) = a = constant

Hence, the centre of mass will be at x = 0.5 m. (middle of the rod)

Putting b = 0 in all the options, only (a) gives 0.5.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: System of Particles and Rotational Motion - Exercises [पृष्ठ ५१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
अध्याय 7 System of Particles and Rotational Motion
Exercises | Q 7.7 | पृष्ठ ५१

संबंधित प्रश्न

Give the location of the centre of mass of a

  1. sphere,
  2. cylinder,
  3. ring, and
  4. cube,

each of uniform mass density. Does the centre of mass of a body necessarily lie inside the body?


You are waiting for a train on a railway platform. Your three-year-old niece is standing on your iron trunk containing the luggage. Why does the trunk not recoil as she jumps off on the platform?


You are holding a cage containing a bird. Do you have to make less effort if the bird flies from its position in the cage and manages to stay in the middle without touching the walls of the cage? Does it makes a difference whether the cage is completely closed or it has rods to let air pass?


Consider the following the equations
(A) \[\vec{R} = \frac{1}{M} \sum_i m_i \vec{r_i}\] and
(B) \[\vec{a}_{CM} = \frac{\vec{F}}{M}\] 
In a noninertial frame


Two blocks of masses 10 kg and 30 kg are placed along a vertical line. The first block is raised through a height of 7 cm. By what distance should the second mass be moved to raise the centre of mass by 1 cm? 


Mr. Verma (50 kg) and Mr. Mathur (60 kg) are sitting at the two extremes of a 4 m long boat (40 kg) standing still in water. To discuss a mechanics problem, they come to the middle of the boat. Neglecting friction with water, how far does the boat move on the water during the process?


Two small balls A and B, each of mass m, are joined rigidly to the ends of a light rod of length L (see the following figure). The system translates on a frictionless horizontal surface with a velocity \[\nu_0\] in a direction perpendicular to the rod. A particle P of mass m kept at rest on the surface sticks to the ball A as the ball collides with it. Find
(a) the linear speeds of the balls A and B after the collision, (b) the velocity of the centre of mass C of the system A + B + P and (c) the angular speed of the system about C after the collision.

[Hint : The light rod will exert a force on the ball B
only along its length.]


Two particles P and Q of mass 1 kg and 3 kg respectively start moving towards each other from rest under mutual attraction. What is the velocity of their center of mass?


A shell of mass 'M' initially at rest suddenly explodes in three fragments. Two of these fragments are of mass 'M/4' each, which move with velocities 3 ms-1 and 4 ms-1 respectively in mutually perpendicular directions. The magnitude of velocity of the third fragment is ______.


Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass:

  1. Show pi = p’+ miV Where pi is the momentum of the ith particle (of mass mi)  and p′ i = mi v′ i. Note v′ i is the velocity of the ith particle relative to the centre of mass. Also, prove using the definition of the centre of mass `sum"p""'"_"t" = 0`
  2. Show K = K′ + 1/2MV2

    where K is the total kinetic energy of the system of particles, K′ is the total kinetic energy of the
    system when the particle velocities are taken with respect to the centre of mass and MV2/2 is the
    kinetic energy of the translation of the system as a whole (i.e. of the centre of mass motion of the
    system). The result has been used in Sec. 7.14.

  3. Show where `"L""'" = sum"r""'"_"t" xx "p""'"_"t"` is the angular momentum of the system about the centre of mass with
    velocities taken relative to the centre of mass. Remember `"r"_"t" = "r"_"t" - "R"`; rest of the notation is the standard notation used in the chapter. Note L′ and MR × V can be said to be angular momenta, respectively, about and of the centre of mass of the system of particles.
  4. Show `"dL"^"'"/"dt" = ∑"r"_"i"^"'" xx "dP"^"'"/"dt"`
    Further show that `"dL"^'/"dt" = τ_"ext"^"'"`
    Where `"τ"_"ext"^"'"` is the sum of all external torques acting on the system about the centre of mass.
    (Hint: Use the definition of centre of mass and third law of motion. Assume the internal forces between any two particles act along the line joining the particles.)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×