हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Minimum Orbital Angular Momentum of the Electron in a Hydrogen Atom is - Physics

Advertisements
Advertisements

प्रश्न

The minimum orbital angular momentum of the electron in a hydrogen atom is

विकल्प

  • h

  • h/2

  • h/2π

  • h

MCQ

उत्तर

h/2π

According to Bohr's atomic theory, the orbital angular momentum of an electron is an integral multiplt of h/2π.
∴ `L_u = (nh)/(2pi)`

Here,
n = Principal quantum number

The minimum value of n is 1.
Thus, the minimum value of the orbital angular momentum of the electron in a hydrogen atom is given by
`L = h/(2pi)`

shaalaa.com
The Line Spectra of the Hydrogen Atom
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Bohr’s Model and Physics of Atom - MCQ [पृष्ठ ३८३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 21 Bohr’s Model and Physics of Atom
MCQ | Q 1 | पृष्ठ ३८३

संबंधित प्रश्न

If Bohr’s quantisation postulate (angular momentum = nh/2π) is a basic law of nature, it should be equally valid for the case of planetary motion also. Why then do we never speak of quantisation of orbits of planets around the sun?


Find the wavelength of the electron orbiting in the first excited state in hydrogen atom.


The first excited energy of a He+ ion is the same as the ground state energy of hydrogen. Is it always true that one of the energies of any hydrogen-like ion will be the same as the ground state energy of a hydrogen atom?


Which wavelengths will be emitted by a sample of atomic hydrogen gas (in ground state) if electrons of energy 12.2 eV collide with the atoms of the gas?


In which of the following transitions will the wavelength be minimum? 


An electron with kinetic energy 5 eV is incident on a hydrogen atom in its ground state. The collision


Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)

(a) will pass through the origin
(b) will be a straight line with slope 4
(c) will be a monotonically increasing nonlinear curve
(d) will be a circle


Calculate the smallest wavelength of radiation that may be emitted by (a) hydrogen, (b) He+ and (c) Li++.


Find the binding energy of a hydrogen atom in the state n = 2.


Find the radius and energy of a He+ ion in the states (a) n = 1, (b) n = 4 and (c) n = 10.


Find the maximum angular speed of the electron of a hydrogen atom in a stationary orbit.


Find the temperature at which the average thermal kinetic energy is equal to the energy needed to take a hydrogen atom from its ground state to n = 3 state. Hydrogen can now emit red light of wavelength 653.1 nm. Because of Maxwellian distribution of speeds, a hydrogen sample emits red light at temperatures much lower than that obtained from this problem. Assume that hydrogen molecules dissociate into atoms.


A hydrogen atom in ground state absorbs a photon of ultraviolet radiation of wavelength 50 nm. Assuming that the entire photon energy is taken up by the electron with what kinetic energy will the electron be ejected?


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


The Balmer series for the H-atom can be observed ______.

  1. if we measure the frequencies of light emitted when an excited atom falls to the ground state.
  2. if we measure the frequencies of light emitted due to transitions between excited states and the first excited state.
  3. in any transition in a H-atom.
  4. as a sequence of frequencies with the higher frequencies getting closely packed.

Positronium is just like a H-atom with the proton replaced by the positively charged anti-particle of the electron (called the positron which is as massive as the electron). What would be the ground state energy of positronium?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×