हिंदी

The Monthly Profits (In Rs.) of 100 Shops Are Distributed as Follows: Draw the Frequency Polygon for It. - Mathematics

Advertisements
Advertisements

प्रश्न

The monthly profits (in Rs.) of 100 shops are distributed as follows:

Profits per shop: 0 - 50 50 - 100 100 - 150 150 - 200 200 - 250 250 - 300
No. of shops: 12 18 27 20 17 6

Draw the frequency polygon for it.

उत्तर

Firstly, we make a cumulative frequency table.

Profit per shop No. of shop More than profit Cumulative frequency Suitable points
0-50 12 0 100 (0, 100)
50-100 18 50 88 (50, 88)
100-150 27 100 70 (100, 70)
150-200 20 150 43 (150, 43)
200-250 17 200 23 (200, 23)
250-300 6 250 6 (250, 6)

Now, plot the frequency polygon (or more than ogive) using suitable points.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Statistics - Exercise 15.6 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 15 Statistics
Exercise 15.6 | Q 4 | पृष्ठ ६३

संबंधित प्रश्न

During the medical check-up of 35 students of a class, their weights were recorded as follows:

Weight (in kg Number of students
Less than 38 0
Less than 40 3
Less than 42 5
Less than 44 9
Less than 46 14
Less than 48 28
Less than 50 32
Less than 52 35

Draw a less than type ogive for the given data. Hence obtain the median weight from the graph verify the result by using the formula.


The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha) 50 − 55 55 − 60 60 − 65 65 − 70 70 − 75 75 − 80
Number of farms 2 8 12 24 38 16

Change the distribution to a more than type distribution and draw ogive.


Draw a ‘more than’ ogive for the data given below which gives the marks of 100 students.

Marks 0 – 10 10 – 20 20 – 30 30 - 40 40 – 50 50 – 60 60 – 70 70 – 80
No of Students 4 6 10 10 25 22 18 5

 


From the following data, draw the two types of cumulative frequency curves and determine the median:

Marks Frequency
140 – 144 3
144 – 148 9
148 – 152 24
152 – 156 31
156 – 160 42
160 – 164 64
164 – 168 75
168 – 172 82
172 – 176 86
176 – 180 34

 

 


Write the median class of the following distribution:

Class 0 – 10 10 -20 20- 30 30- 40 40-50 50- 60 60- 70
Frequency 4 4 8 10 12 8 4

Consider the following frequency distributions

Class 65 - 85 85 - 105 105 - 125 125 - 145 145 - 165 165 - 185 185-205
Frequency 4 5 13 20 14 7 4

The difference of the upper limit of the median class and the lower limit of the modal class is?


The arithmetic mean of the following frequency distribution is 53. Find the value of k.

Class 0-20 20-40 40-60 60-80 80-100
Frequency 12 15 32 k 13

Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.

Class interval: 20−30 30−40 40−50 50−60 60−70 70−80 80−90
Frequency: 10 8 12 24 6 25 15

The following is the distribution of weights (in kg) of 40 persons:

Weight (in kg) 40 – 45 45 – 50 50 – 55 55 – 60 60 – 65 65 – 70 70 – 75 75 – 80
Number of persons 4 4 13 5 6 5 2 1

Construct a cumulative frequency distribution (of the less than type) table for the data above.


The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:

Age (in years) 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 60 – 70
Number of patients 60 42 55 70 53 20

Form: More than type cumulative frequency distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×