Advertisements
Advertisements
प्रश्न
The radius of a sphere is 10 cm. If we increase the radius 5% then how many % will increase in volume?
उत्तर
Volume of sphere = `4/3πr^3`
∴ Radius = r = 10 cm
∴ Volume of sphere = `4/3` π x 10 x 10 x 10
= `(4000π)/3` cm3
Now, increase the radius 5%
Radius of new sphere = `(10 xx 105)/100 = 21/2` cm.
Volume of new sphere = `4/3 π xx 21/2 xx 21/2 xx 21/2`
= `(9261π)/6` cm3
Increase volume = Volume of new sphere - Volume of sphere
= `(9261π)/6 - (4000π)/3`
= `(9261π - 8000π)/6`
= `(1261π)/6` cm
Percentage of increasing volume = `((1261π)/6 xx 100)/((4000π)/3)`
= `(1261π xx 100 xx 2)/(4000π xx 6)`
= `1261/80 %`
= `15 61/80 %`
APPEARS IN
संबंधित प्रश्न
Find the surface area of a sphere of diameter 21 cm.
`["Assume "pi=22/7]`
The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
The surface area of a sphere is 5544 `cm^2`, find its diameter.
The surface area of a solid sphere is increased by 12% without changing its shape. Find the percentage increase in its:
- radius
- volume
A solid rectangular block of metal 49 cm by 44 cm by 18 cm is melted and formed into a solid sphere. Calculate the radius of the sphere.
The total area of a solid metallic sphere is 1256 cm2. It is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate :
- the radius of the solid sphere.
- the number of cones recast. [Take π = 3.14]
A hollow sphere of internal and external radii 6 cm and 8 cm respectively is melted and recast into small cones of base radius 2 cm and height 8 cm. Find the number of cones.
Spherical marbles of diameter 1.4 cm are dropped into beaker containing some water and are fully submerged. The diameter of the beaker is 7 cm. Find how many marbles have been dropped in it if the water rises by 5.6 cm.
What is the least number of solid metallic spheres, each of 6 cm diameter, that should be melted and recast to form a solid metal cone whose height is 45 cm and diameter 12 cm?
The diameter of a sphere is 6 cm. It is melted and drawn into a wire of diameter 0.2 cm. Find the length of the wire.
The surface area of a sphere of radius 5 cm is five times the area of the curved surface of a cone of radius 4 cm. Find the height of the cone.
The ratio between the volume of a sphere and volume of a circumscribing right circular cylinder is
The model of a building is constructed with the scale factor 1 : 30.
(i) If the height of the model is 80 cm, find the actual height of the building in meters.
(ii) If the actual volume of a tank at the top of the building is 27m3, find the volume of the tank on the top of the model.
Find the surface area and volume of sphere of the following radius. (π = 3.14)
4 cm
Find the surface area of a sphere, if its volume is 38808 cubic cm. `(π = 22/7)`
A sphere has the same curved surface area as the curved surface area of a cone of height 36 cm and base radius 15 cm . Find the radius of the sphere .
A hemispherical bowl of internal radius 9 cm is full of liquid. This liquid is to be filled into conical shaped small containers each of diameter 3 cm and height 4 cm. How many containers are necessary to empty the bowl?
A spherical cannon ball, 28 cm in diameter is melted and recast into a right circular conical mould, the base of which is 35 cm in diameter. Find the height of the cone, correct to one place of decimal.
The radius of a sphere increases by 25%. Find the percentage increase in its surface area
A manufacturing company prepares spherical ball bearings, each of radius 7 mm and mass 4 gm. These ball bearings are packed into boxes. Each box can have maximum of 2156 cm3 of ball bearings. Find the:
- maximum number of ball bearings that each box can have.
- mass of each box of ball bearings in kg.
(use π = `22/7`)