हिंदी

The resistance of a potentiometer wire is 8 n and its length is 8 m. A resistance box and a 2 V battery are connected in series with iL What should be the resistance in the box - Physics

Advertisements
Advertisements

प्रश्न

The resistance of a potentiometer wire is 8 Ω and its length is 8 m. A resistance box and a 2 V battery are connected in series with iL What should be the resistance in the box if it is desired to have a potential drop of 1 µV/mm?

संख्यात्मक

उत्तर

Data: R = 8 Ω, L = 8 m, E = 2 V, K = 1 µV/ mm

`= 1 xx (10^-6 "V")/(10^-3 "m") = 10^-3 "V"//"m"`

K = `"V"/"L" = "ER"/(("R" + "R"_"B")"L")`, where RB is the resistance in the box.

∴ `10^-3 = (2 xx 8)/((8 + "R"_"B")8)`

∴ `8 + "R"_"B" = 2/10^-3`

∴ `8 + "R"_"B" = 2 xx 10^3`

∴ `"R"_"B" = 2000 - 8`

∴ `"R"_"B"` = 1992 ohm

shaalaa.com
Potentiometer
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Current Electricity - Exercises [पृष्ठ २२९]

APPEARS IN

बालभारती Physics [English] 12 Standard HSC Maharashtra State Board
अध्याय 9 Current Electricity
Exercises | Q 18 | पृष्ठ २२९

संबंधित प्रश्न

Accuracy of potentiometer can be easily increased by ______.


Figure shows a potentiometer with a cell of 2.0 V and internal resistance 0.40 Ω maintaining a potential drop across the resistor wire AB. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents up to a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, very high resistance of 600 kΩ is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emf ε and the balance point found similarly, turns out to be at 82.3 cm length of the wire.

(a) What is the value ε?

(b) What purpose does the high resistance of 600 kΩ have?

(c) Is the balance point affected by this high resistance?

(d) Is the balance point affected by the internal resistance of the driver cell?

(e) Would the method work in the above situation if the driver cell of the potentiometer had an emf of 1.0 V instead of 2.0 V?

(f) Would the circuit work well for determining an extremely small emf, say of the order of a few mV (such as the typical emf of a thermo-couple)? If not, how will you modify the circuit?


State the advantages of potentiometer over voltmeter.


(i) State the principle on which a potentiometer works. How can a given potentiometer be made more sensitive?

(ii) In the graph shown below for two potentiometers, state with reason which of the two potentiometers, A or B, is more sensitive.

In the given circuit in the steady state, obtain the expressions for (a) the potential drop (b) the charge and (c) the energy stored in the capacitor, C.


State the working principle of a potentiometer. With the help of the circuit diagram, explain how a potentiometer is used to compare the emf's of two primary cells. Obtain the required expression used for comparing the emfs.


Write two possible causes for one sided deflection in a potentiometer experiment.


Describe briefly, with the help of a circuit diagram, how a potentiometer is used to determine the internal resistance of a cell.


In the figure a long uniform potentiometer wire AB is having a constant potential gradient along its length. The null points for the two primary cells of emfs ε1 and ε2 connected in the manner shown are obtained at a distance of 120 cm and 300 cm from the end A. Find (i) ε1/ ε2 and (ii) position of null point for the cell ε1.

How is the sensitivity of a potentiometer increased?


Would you prefer a voltmeter or a potentiometer to measure the emf of a battery?


The net resistance of an ammeter should be small to ensure that _______________ .


Define potential gradient of the potentiometer wire.


How is potential gradient measured? Explain.


What are the disadvantages of a potentiometer?


Describe with the help of a neat circuit diagram how you will determine the internal resistance of a cell by using a potentiometer. Derive the necessary formula.


The emf of a cell is balanced by a length of 120 cm of a potentiometer wire. When the cell is shunted by a resistance of 10 Ω, the balancing length is reduced by 20 cm. Find the internal resistance of the cell.


The SI unit of the potential gradient is ______  


When the null point is obtained in the potentiometer, the current is drawn from the ______  


If the potential gradient of a wire decreases, then its length ______  


A potentiometer wire is 4m long and potential difference of 3V is maintained between the ends. The emf of the cell, which balances against a length of 100 cm of the potentiometer wire is ____________.


A 10 m long wire of resistance 20 Q is connected in series with a battery of emf 3 V and a resistance of 10 Ω. The potential gradient along the wire in V/m is ________.


In a potentiometer experiment, when the galvanometer shows no deflection, then no current flows through ____________.


Select the WRONG statement:


If the e.m.f of a cell is not constant in the metre bridge experiment, then the ____________.


Which of the following is true for a potentiometer?


To determine the internal resistance of a cell by using potentiometer, the null point is at 1 m when cell is shunted by 3 Ω resistance and at a length 1.5 m when cell is shunted by 6 Ω resistance. The internal resistance of the cell is ______.


A potentiometer wire of length 100 cm and resistance 3 `Omega` is connected in series with resistance of 8 `Omega` and an accumulator of 4 volt whose internal resistance is 1 `Omega`.


In the potentiometer experiment, the balancing length with cell E1 of unknown e.m.f. is ℓ1 cm. By shunting the cell E1 with resistance 'R' which is equal to internal resistance (r) of the cell E1, the balancing length ℓ2 is ______


A potentiometer is used to measure the potential difference between A and B, the null point is obtained at 0.9 m. Now the potential difference between A and C is measured, the null point is obtained at 0.3 m. The ratio `E_2/E_1` is (E1 > E2) ______

 


In the experiment to determine the internal resistance of a cell (E1) using a potentiometer, the resistance drawn from the resistance box is 'R'. The potential difference across the balancing length of the wire is equal to the terminal potential difference (V) of the cell. The value of internal resistance (r) of the cell is ______


If the length of potentiometer wire is increased, then the length of the previously obtained balance point will ______.


A student connected the circuit as shown in the figure to determine the internal resistance of a cell E1 by potentiometer (E > E1). He is unable to obtain the null point because ______.


In a potentiometer experiment when three cells A, B, C are connected in series the balancing length is found to be 740 cm. If A and B are connected in series, the balancing length is 440 cm and when B and C are connected in series, it is 540 cm. The e.m.f. of A, B, and C cells EA, EB, EC are respectively (in volt) ______


In the potentiometer experiment, cells of e.m.f. E1 and E2 are connected in series (E1 > E2). the balancing length is 64 cm of the wire. If the polarity of E2 is reversed, the balancing length becomes 32 cm. The ratio `E_1/E_2` is ______   


In a potentiometer experiment, for measuring internal resistance of a cell, the balance point has been obtained on the fourth wire. The balance point can be shifted to fifth wire by ______.


It is observed in a potentiometer experiment that no current passes through the galvanometer when the terminals of the cell are connected across a certain length of the potentiometer wire. On shunting the cell by a 2 Ω resistance, the balancing length is reduced to half. The internal resistance of the cell is ______.


Potentiometer measures potential more accurately because _________.

For measuring voltage of any circuit, potentiometer is preferred to voltmeter because ______.

In a potentiometer of 10 wires, the balance point is obtained on the 7th wire. To shift the balance point to 9th wire, we should ______.


Specific resistance of a conductor increase with.


The instrument among the following which measures the e.m.f of a cell most accurately is ______


AB is a potentiometer wire (Figure). If the value of R is increased, in which direction will the balance point J shift?


For the circuit shown, with R1 = 1.0 Ω, R2 = 2.0 Ω, E1 = 2 V, and E2 = E3 = 4 V, the potential difference between the points 'a' and 'b' is approximately (in V) ______.


A Daniel cell is balanced on 125 cm lengths of a potentiometer wire. Now the cell is short circuited by a resistance 2 Ω and the balance is obtained at 100 cm. The internal resistance of the Daniel cell is ______.


As a cell age, its internal resistance increases. A voltmeter of resistance 270 Ω connected across an old dry cell reads 1.44 V. However, a potentiometer at the balance point gives a voltage measurement of the cell as 1.5 V. Internal resistance of the cell is ______ Ω.


Two cells of same emf but different internal resistances r1 and r2 are connected in series with a resistance R. The value of resistance R, for which the potential difference across second cell is zero, is ______.


A cell of internal resistance r is connected across an external resistance nr. Then the ratio of the terminal voltage to the emf of the cell is ______.


In potentiometer experiment, null point is obtained at a particular point for a cell on potentiometer wire x cm long. If the length of the potentiometer wire is increased without changing the cell, the balancing length will ______. (Driving source is not changed) 


What will a voltmeter of resistance 200 Ω read when connected across a cell of emf 2 V and internal resistance 2 Ω?


Draw a neat labelled diagram of Internal resistance of a cell using a potentiometer.


Three identical cells each of emf 'e' are connected in parallel to form a battery. What is the emf of the battery?


The Figure below shows a potentiometer circuit in which the driver cell D has an emf of 6 V and internal resistance of 2 Ω. The potentiometer wire AB is 10 m long and has a resistance of 28 Ω. The series resistance RS is of 2 Ω.

  1. The current Ip flowing in the potentiometer wire AB when the jockey (J) does not touch the wire AB.
  2. emf of the cell X if the balancing length AC is 4.5 m.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×