English

The resistance of a potentiometer wire is 8 n and its length is 8 m. A resistance box and a 2 V battery are connected in series with iL What should be the resistance in the box - Physics

Advertisements
Advertisements

Question

The resistance of a potentiometer wire is 8 Ω and its length is 8 m. A resistance box and a 2 V battery are connected in series with iL What should be the resistance in the box if it is desired to have a potential drop of 1 µV/mm?

Numerical

Solution

Data: R = 8 Ω, L = 8 m, E = 2 V, K = 1 µV/ mm

`= 1 xx (10^-6 "V")/(10^-3 "m") = 10^-3 "V"//"m"`

K = `"V"/"L" = "ER"/(("R" + "R"_"B")"L")`, where RB is the resistance in the box.

∴ `10^-3 = (2 xx 8)/((8 + "R"_"B")8)`

∴ `8 + "R"_"B" = 2/10^-3`

∴ `8 + "R"_"B" = 2 xx 10^3`

∴ `"R"_"B" = 2000 - 8`

∴ `"R"_"B"` = 1992 ohm

shaalaa.com
Potentiometer
  Is there an error in this question or solution?
Chapter 9: Current Electricity - Exercises [Page 229]

APPEARS IN

Balbharati Physics [English] 12 Standard HSC Maharashtra State Board
Chapter 9 Current Electricity
Exercises | Q 18 | Page 229

RELATED QUESTIONS

Accuracy of potentiometer can be easily increased by ______.


SI unit of potential gradient is _______.

(a) V cm

(b) `V/"cm"`

(c) Vm

(d) `V/m`

 


(i) State the principle on which a potentiometer works. How can a given potentiometer be made more sensitive?

(ii) In the graph shown below for two potentiometers, state with reason which of the two potentiometers, A or B, is more sensitive.

Describe briefly, with the help of a circuit diagram, how a potentiometer is used to determine the internal resistance of a cell.


In the figure a long uniform potentiometer wire AB is having a constant potential gradient along its length. The null points for the two primary cells of emfs ε1 and ε2 connected in the manner shown are obtained at a distance of 120 cm and 300 cm from the end A. Find (i) ε1/ ε2 and (ii) position of null point for the cell ε1.

How is the sensitivity of a potentiometer increased?


The potentiometer wire AB shown in the figure is 40 cm long. Where should the free end of the galvanometer be connected on AB, so that the galvanometer may show zero deflection?


The potentiometer wire AB shown in the figure is 50 cm long. When AD = 30 cm, no deflection occurs in the galvanometer. Find R.


In a potentiometer experiment, the balancing length with a resistance of 2Ω is found to be 100 cm, while that of an unknown resistance is 500 cm. Calculate the value of the unknown resistance. 


Draw a labelled circuit diagram of a potentiometer to compare emfs of two cells. Write the working formula (Derivation not required).


Distinguish between a potentiometer and a voltmeter.


Describe how a potentiometer is used to compare the EMFs of two cells by connecting the cells individually.


A battery of emf 4 volt and internal resistance 1 Ω is connected in parallel with another battery of emf 1 V and internal resistance 1 Ω (with their like poles connected together). The combination is used to send current through an external resistance of 2 Ω. Calculate the current through the external resistance.


What will be the effect on the position of zero deflection if only the current flowing through the potentiometer wire is decreased?


When the null point is obtained in the potentiometer, the current is drawn from the ______  


What is the SI unit of potential gradient?


What are the disadvantages of a potentiometer over a voltmeter?


The emf of a standard cell is 1.5V and is balanced by a length of 300 cm of a potentiometer with a 10 m long wire. Find the percentage error in a voltmeter that balances at 350 cm when its reading is 1.8 V.  


Two cells having unknown emfs E1 and E2 (E1 > E2) are connected in potentiometer circuit, so as to assist each other. The null point obtained is at 490 cm from the higher potential end. When cell E2 is connected, so as to oppose cell E1, the null point is obtained at 90 cm from the same end. The ratio of the emfs of two cells `("E"_1/"E"_2)` is ______.


A 10 m long wire of resistance 20 Q is connected in series with a battery of emf 3 V and a resistance of 10 Ω. The potential gradient along the wire in V/m is ________.


The potentiometer is more sensitive, when ______.


The resistivity of potentiometer wire is 40 × 10-8 ohm - metre and its area of cross-section is 8 × 10-6 m2. If 0.2 ampere current is flowing through the wire, the potential gradient of the wire is ______.


A potentiometer wire has length L For given cell of emf E, the balancing length is `"L"/3` from 3 the positive end of the wire. If the length of the potentiometer wire is increased by 50%, then for the same cell, the balance point is obtained at length.


A cell of e.m.f. 'E' is connected across a resistance 'R'. The potential difference across the terminals of the cell is 90% ofE. The internal resistance of the cell is ______.


If the length of potentiometer wire is increased, then the length of the previously obtained balance point will ______.


In a potentiometer experiment when three cells A, B, C are connected in series the balancing length is found to be 740 cm. If A and B are connected in series, the balancing length is 440 cm and when B and C are connected in series, it is 540 cm. The e.m.f. of A, B, and C cells EA, EB, EC are respectively (in volt) ______


A potentiometer wire is 4 m long and a potential difference of 3 V is maintained between the ends. The e.m.f. of the cell which balances against a length of 100 cm of the potentiometer wire is ______


Potentiometer measures the potential difference more accurately than a voltmeter, because ______.


In a potentiometer experiment, for measuring internal resistance of a cell, the balance point has been obtained on the fourth wire. The balance point can be shifted to fifth wire by ______.


It is observed in a potentiometer experiment that no current passes through the galvanometer when the terminals of the cell are connected across a certain length of the potentiometer wire. On shunting the cell by a 2 Ω resistance, the balancing length is reduced to half. The internal resistance of the cell is ______.


A battery is connected with a potentiometer wire. The internal resistance of the battery is negligible. If the length of the potentiometer wire of the same material and radius is doubled then ______.


A potentiometer wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at 50 cm and 10 cm from the positive end of the wire in the two cases. The ratio of emf's is ______.


Potentiometer measures potential more accurately because _________.

Sensitivity of potentiometer can be increased by ______.

In potentiometer a balance point is obtained, when ______.

In the experiment of potentiometer, at balance point, there is no current in the ______.


The best instrument for accurate measurement of EMF of a cell is ____________.


AB is a wire of potentiometer with the increase in value of resistance R, the shift in the balance point J will be:


In a potentiometer circuit, a cell of EMF 1.5 V gives balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell, then at what length of the wire, the balance point occurs?


AB is a potentiometer wire (Figure). If the value of R is increased, in which direction will the balance point J shift?


While doing an experiment with potentiometer (Figure) it was found that the deflection is one sided and (i) the deflection decreased while moving from one end A of the wire to the end B; (ii) the deflection increased. while the jockey was moved towards the end B.

  1. Which terminal + or – ve of the cell E1, is connected at X in case (i) and how is E1 related to E?
  2. Which terminal of the cell E1 is connected at X in case (ii)?


Potential difference between the points A and B in the circuit shown is 16 V, then potential difference across 2Ω resistor is ______ V. volt. (VA > VB)


A Daniel cell is balanced on 125 cm lengths of a potentiometer wire. Now the cell is short circuited by a resistance 2 Ω and the balance is obtained at 100 cm. The internal resistance of the Daniel cell is ______.


Two identical thin metal plates has charge q1 and q2 respectively such that q1 > q2. The plates were brought close to each other to form a parallel plate capacitor of capacitance C. The potential difference between them is ______.


Two cells of same emf but different internal resistances r1 and r2 are connected in series with a resistance R. The value of resistance R, for which the potential difference across second cell is zero, is ______.


A cell of internal resistance r is connected across an external resistance nr. Then the ratio of the terminal voltage to the emf of the cell is ______.


In balanced meter bridge, the resistance of bridge wire is 0.1 Ω cm. Unknown resistance X is connected in left gap and 6 Ω in right gap, null point divides the wire in the ratio 2:3. Find the current drawn from the battery of 5 V having negligible resistance.


A particle carrying 8 electron charges starts from rest and is accelerated through a potential difference of 9000 V. Calculate the KE acquired by it in keV.


Three identical cells each of emf 'e' are connected in parallel to form a battery. What is the emf of the battery?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×