हिंदी

Torques of Equal Magnitude Are Applied to a Hollow Cylinder and a Solid Sphere, Both Having the Same Mass and Radius. the Cylinder is Free to Rotate About Its Standard Axis of Symmetry, and the Sphere is Free to Rotate About an Axis Passing Through Its Centre. Which of the Two Will Acquire a Greater Angular Speed After a Given Time - Physics

Advertisements
Advertisements

प्रश्न

Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both having the same mass and radius. The cylinder is free to rotate about its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre. Which of the two will acquire a greater angular speed after a given time?

उत्तर १

Let M be the mass and R the radius of the hollow cylinder, and also of the solid sphere. Their moments of inertia about the respective axes are I1 = MR2 and I2 = 2/5 MR2

Let τ be the magnitude of the torque applied to the cylinder and the sphere, producing angular accelerations α1and α2 respectively. Then τ=I1 α= I2 α2

The angular acceleration 04 produced in the sphere is larger. Hence, the sphere will acquire larger angular speed after a given time.

shaalaa.com

उत्तर २

Let m and r be the respective masses of the hollow cylinder and the solid sphere.

The moment of inertia of the hollow cylinder about its standard axis, `I_1 = mr^2`

The moment of inertia of the solid sphere about an axis passing through its centre,` I_n = 2/5 mr^2`

We have the relation:

`t = Ialpha`

Where

`alpha`  = Angular acceleration

τ = Torque

I = Moment of inertia

For the hollow cylinder, `t_1 = I_1alpha1`

For the solid sphere, `t_n = I_nalpha_n`

As an equal torque is applied to both the bodies,` t_1 = t_2`

`:.(alpha_II)/(alpha_I) = (I_I)/(I_"II") = (mr^2)/(2/5mr^2) =2/5`

`alpha_(II) > alpha_I` ...(i)

Now, using the relation:

`omega = omega_0 + alpha t`

where

`omega_0` = Initial angular velocity

t = Time of rotation

ω = Final angular velocity

For equal ω0 and t, we have:

ω ∝ α … (ii)

From equations (i) and (ii), we can write:

ωII > ωI

Hence, the angular velocity of the solid sphere will be greater than that of the hollow cylinder

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: System of Particles and Rotational Motion - Exercises [पृष्ठ १७९]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
अध्याय 7 System of Particles and Rotational Motion
Exercises | Q 11 | पृष्ठ १७९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Given the moment of inertia of a disc of mass and radius about any of its diameters to be MR2/4, find its moment of inertia about an axis normal to the disc and passing through a point on its edge


A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom of the inclined plane, the centre of mass of the cylinder has a speed of 5 m/s.

(a) How far will the cylinder go up the plane?

(b) How long will it take to return to the bottom?


Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speeds ω1 and ω2 are brought into contact face to face with their axes of rotation coincident. (a) What is the angular speed of the two-disc system? (b) Show that the kinetic energy of the combined system is less than the sum of the initial kinetic energies of the two discs. How do you account for this loss in energy? Take ω1 ≠ ω2.


The moment of inertia of a uniform semicircular wire of mass M and radius r about a line perpendicular to the plane of the wire through the centre is ___________ .


A body having its centre of mass at the origin has three of its particles at (a,0,0), (0,a,0), (0,0,a). The moments of inertia of the body about the X and Y axes are 0⋅20 kg-m2 each. The moment of inertia about the Z-axis


A string is wrapped on a wheel of moment of inertia 0⋅20 kg-m2 and radius 10 cm and goes through a light pulley to support a block of mass 2⋅0 kg as shown in the following figure. Find the acceleration of the block.


Solve the previous problem if the friction coefficient between the 2⋅0 kg block and the plane below it is 0⋅5 and the plane below the 4⋅0 kg block is frictionless.


A wheel of moment of inertia 0⋅10 kg-m2 is rotating about a shaft at an angular speed of 160 rev/minute. A second wheel is set into rotation at 300 rev/minute and is coupled to the same shaft so that both the wheels finally rotate with a common angular speed of 200 rev/minute. Find the moment of inertia of the second wheel.


A uniform square plate has a small piece Q of an irregular shape removed and glued to the centre of the plate leaving a hole behind (Figure). The moment of inertia about the z-axis is then ______.


Four equal masses, m each are placed at the corners of a square of length (l) as shown in the figure. The moment of inertia of the system about an axis passing through A and parallel to DB would be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×