Advertisements
Advertisements
प्रश्न
Two solid cones A and B are placed in a cylindrical tube as shown in fig .16.76. The ratio of their capacities are 2: 1 . Find the heights and capacities of the cones . Also, find the volume of the remaining portion of the cylinder.
उत्तर
V1 : V2 = 2 : 1
Diameter of the cylinder = 6 cm
Radius, r = 3 cm
Height of the cylinder = 21 cm
Let the height of one cone be H.
So, the height of the other cone will be 21 − H.
\[\frac{V_1}{V_2} = \frac{\pi \left( 3 \right)^2 H}{\pi \left( 3 \right)^2 \left( 21 - H \right)}\]
\[ \Rightarrow \frac{2}{1} = \frac{H}{21 - H}\]
\[ \Rightarrow 42 - 2H = H\]
\[ \Rightarrow H = 14 cm\]
Height of one of the cones will be 14 cm and of the other will be 21 − H = 21 − 14 = 7 cm
Volume of cone with height 14 cm = \[V_1 = \pi \left( 3 \right)^2 \times 14 = 396 {cm}^3\]
Volume of cone with height 7 cm = \[V_2 = \frac{1}{3}\pi \left( 3 \right)^2 \times 7 = 66 {cm}^3\]
Volume of the remaining portion of the cylinder =
\[\text { Volume of the cylinder - volume of cone 1 - volume of cone 2 }\]
\[\Rightarrow V = \pi \left( 3 \right)^2 \times 21 - 396 - 66\]
\[ = 594 - 396 - 66\]
\[ = 132 {cm}^3\]
APPEARS IN
संबंधित प्रश्न
A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have? Find the surface area of the solid. [Use `pi = 22/7`]
The internal and external diameters of a hollow hemisphere vessel are 21cm and 25.2 cm The cost of painting 1cm2 of the surface is 10paise. Find total cost to paint the vessel all
over______?
A bucket made of aluminum sheet is of height 20cm and its upper and lower ends are of radius 25cm an 10cm, find cost of making bucket if the aluminum sheet costs Rs 70 per
100 cm2
Three solid spheres of radii 3, 4 and 5 cm respectively are melted and converted into a single solid sphere. Find the radius of this sphere.
A solid is in the form of a cylinder with hemispherical ends. Total height of the solid is 19 cm and the diameter of the cylinder is 7 cm. Find the volume and total surface area of the solid.
Two cubes each of volume 27 cm3 are joined end to end to form a solid. Find the surface area of the resulting cuboid.
From a solid cylinder of height 2.8 cm and diameter 4.2 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid.
How many cubes of 10 cm edge can be put in a cubical box of 1 m edge?
Ramesh made a bird-bath for his garden in the shape of a cylinder with a hemispherical depression at one end. The height of the cylinder is 1.45 m and its radius is 30 cm. Find the total surface area of the bird-bath.
The ratio of total surface area of a solid hemisphere to the square of its radius is ______.