हिंदी

Two Trains a and B of Length 400 m Each Are Moving on Two Parallel Tracks with a Uniform Speed of 72 Km H–1 In the Same Direction, with a Ahead of B What Was the Original Distance Between Them - Physics

Advertisements
Advertisements

प्रश्न

Two trains A and B of length 400 m each are moving on two parallel tracks with a uniform speed of 72 km h–1 in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by 1 m/s2. If after 50 s, the guard of B just brushes past the driver of A, what was the original distance between them?

उत्तर १

For train A:

Initial velocity, u = 72 km/h = 20 m/s

Time, t = 50 s

Acceleration, aI = 0 (Since it is moving with a uniform velocity)

From second equation of motion, distance (sI)covered by train A can be obtained as:

`s_1 = ut + 1/2 a_1t^2`

= 20 × 50 + 0 = 1000 m

For train B:

Initial velocity, u = 72 km/h = 20 m/s

Acceleration, a = 1 m/s2

Time, t = 50 s

From second equation of motion, distance (sII)covered by train A can be obtained as:

`s_u = ut + 1/2 at^2`

`=20xx50+1/2xx1xx(50)^2250 m`

Hence, the original distance between the driver of train A and the guard of train B is 2250 – 1000  = 1250 m

shaalaa.com

उत्तर २

Here length of train A = length of train B = l = 400 m. As speed of both trains u = 72 km h-1 = 20 ms-1 in same direction, hence their relative velocity uBA = 0.

Let initial distance between the two trains be ‘S’ then train B covers the distance (S + 11) = (S + 800) m in time t = 50 s when accelerated with a uniform acceleration a = 1 m/s2.

`:. (s+800) = u_(AB) xx t + 1/2 at^2`

`= 0 + 1/2 xx1xx(50)^2 = 1250 m`

=> S = 1250 - 800 = 450 m

and initial distance between guard of train B from driver of train A = 450 + 800 = 1250 m.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Motion in a Straight Line - Exercises [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
अध्याय 3 Motion in a Straight Line
Exercises | Q 7 | पृष्ठ ५६

संबंधित प्रश्न

A car moving along a straight highway with a speed of 126 km h–1 is brought to a stop within a distance of 200 m. What is the retardation of the car (assumed uniform), and how long does it take for the car to stop?


A boy standing on a stationary lift (open from above) throws a ball upwards with the maximum initial speed he can, equal to 49 m/s. How much time does the ball take to return to his hands? If the lift starts moving up with a uniform speed of 5 m/s and the boy again throws the ball up with the maximum speed he can, how long does the ball take to return to his hands?


A train starts from rest and moves with a constant acceleration of 2.0 m/s2 for half a minute. The brakes are then applied and the train comes to rest in one minute. Find  the maximum speed attained by the train .


A stone is thrown vertically upward with a speed of 28 m/s.Find its velocity one second before it reaches the maximum height.


A person sitting on the top of a tall building is dropping balls at regular intervals of one second. Find the positions of the 3rd, 4th and 5th ball when the 6th ball is being dropped.


An NCC parade is going at a uniform speed of 6 km/h through a place under a berry tree on which a bird is sitting at a height of 12.1 m. At a particular instant the bird drops a berry. Which cadet (give the distance from the tree at the instant) will receive the berry on his uniform?


A river 400 m wide is flowing at a rate of 2.0 m/s. A boat is sailing at a velocity of 10 m/s with respect to the water, in a direction perpendicular to the river. How far from the point directly opposite to the starting point does the boat reach the opposite bank?


A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h. If he heads in a direction making an angle θ with the flow, find the time he takes to cross the river.


Consider the situation of the previous problem. The man has to reach the other shore at the point directly opposite to his starting point. If he reaches the other shore somewhere else, he has to walk down to this point. Find the minimum distance that he has to walk. 


Six particles situated at the corner of a regular hexagon of side a move at a constant speed v. Each particle maintains a direction towards the particle at the next corner. Calculate the time the particles will take to meet each other.  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×