हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Use Lenz’s law to determine the direction of induced current in the situation described by the figure: A wire of irregular shape turning into a circular shape. - Physics

Advertisements
Advertisements

प्रश्न

Use Lenz’s law to determine the direction of induced current in the situation described by the figure:

A wire of irregular shape turning into a circular shape.

संक्षेप में उत्तर

उत्तर

According to Lenz’s law, the direction of the induced emf is such that it tends to produce a current that opposes the change in the magnetic flux that produced it.

A greater area and, by extension, a stronger magnetic flux, are the results of a change in shape. In order to create opposing flux, Lenz's law is used to build up an induced current in the circular wire in an anticlockwise direction. Thus, the upward-directed magnetic field is a result of it.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Electromagnetic Induction - Exercise [पृष्ठ २३०]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 6 Electromagnetic Induction
Exercise | Q 2 | पृष्ठ २३०
एनसीईआरटी Physics [English] Class 12
अध्याय 6 Electromagnetic Induction
Exercise | Q 6.2 | पृष्ठ २३०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Predict the direction of induced current in the situation described by the following figure.


What is the direction of induced currents in metal rings 1 and 2 when current I in the wire is increasing steadily? 


Show that Lenz's law is a consequence of conservation of energy.


Predict the directions of induced currents in metal rings 1 and 2 lying in the same plane where current I in the wire is increasing steadily.


Predict the direction of induced current in a metal ring when the ring is moved towards a straight conductor with constant speed v. The conductor is carrying current I in the direction shown in the figure.


Predict the direction of induced current in metal rings 1 and 2 when current I in the wire is steadily decreasing?


A bar magnet is moved in the direction indicated by the arrow between two coils PQ and CD. Predict the directions of induced current in each coil.


A short magnet is moved along the axis of a conducting loop. Show that the loop repels the magnet if the magnet is approaching the loop and attracts the magnet if it is going away from the loop.


The battery discussed in the previous question is suddenly disconnected. Is a current induced in the other loop? If yes, when does it start and when does it end? Do the loops attract each other or repel?


Lenz’s law is a consequence of the law of conservation of ______.


The polarity of induced emf is given by ______.

2 A 40 kg boy whose legs are 4 cm in area and 50 cm long falls through a height of 2 m without breaking his leg bones. If the bones can withstand stress of 0.9 x 108 N/m2. The Young's modulus for the material of the bone is ______.


Young's modulus for aluminium is 7 × 1010 Pa. The force needed to stretch an aluminium wire of diameter 2 mm and length 800 mm by 1 mm is ______.


For a coil having L = 2 mH, current flows at the rate of 10-3 AIS. The e.m.f induced is


Consider a magnet surrounded by a wire with an on/off switch S (Figure). If the switch is thrown from the off position (open circuit) to the on position (closed circuit), will a current flow in the circuit? Explain.

 


A wire in the form of a tightly wound solenoid is connected to a DC source, and carries a current. If the coil is stretched so that there are gaps between successive elements of the spiral coil, will the current increase or decrease? Explain.


Consider a metal ring kept (supported by a cardboard) on top of a fixed solenoid carrying a current I (Figure). The centre of the ring coincides with the axis of the solenoid. If the current in the solenoid is switched off, what will happen to the ring?


Predict the direction of induced current in the situation described by the following figure.


Use Lenz’s law to determine the direction of induced current in the situation described by the figure.

A circular loop being deformed into a narrow straight wire.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×