हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Battery Discussed in the Previous Question is Suddenly Disconnected. is a Current Induced in the Other Loop? If Yes When Does It Start and When Does It End Do the Loops Attract Each Other Or Repel - Physics

Advertisements
Advertisements

प्रश्न

The battery discussed in the previous question is suddenly disconnected. Is a current induced in the other loop? If yes, when does it start and when does it end? Do the loops attract each other or repel?

टिप्पणी लिखिए

उत्तर

When the battery is suddenly disconnected, a current is induced in loop B due to a sudden change in the flux through it. It is only induced for a moment when the current suddenly falls to zero. There is no induced current after it has fallen to zero. According to Lenz's law, the induced current is such that it increases the decreasing magnetic field. So, if the current in loop A is in clockwise direction, the induced current in loop B will also be in clockwise direction. Hence, the two loops will attract each other.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Electromagnetic Induction - Short Answers [पृष्ठ ३०३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 16 Electromagnetic Induction
Short Answers | Q 6 | पृष्ठ ३०३

संबंधित प्रश्न

State Lenz's law. Illustrate, by giving an example, how this law helps in predicting the direction of the current in a loop in the presence of a changing magnetic flux.


Describe a simple experiment (or activity) to show that the polarity of emf induced in a coil is always such that it tends to produce a current which opposes the change of magnetic flux that produces it.


Use Lenz’s law to determine the direction of induced current in the situation described by the figure:

A wire of irregular shape turning into a circular shape.


What is the direction of induced currents in metal rings 1 and 2 when current I in the wire is increasing steadily? 


Predict the direction of induced current in metal rings 1 and 2 when current I in the wire is steadily decreasing?


A short magnet is moved along the axis of a conducting loop. Show that the loop repels the magnet if the magnet is approaching the loop and attracts the magnet if it is going away from the loop.


Consider the situation shown in figure. If the closed loop is completely enclosed in the circuit containing the switch, the closed loop will show _______________ .


Explain, with the help of a suitable example, how we can show that Lenz's law is a consequence of the principle of conservation of energy.


Which of the following statements is not correct?


A bar magnet is dropped through a copper ring acceleration of magnet is


Lenz's law gives ______


There are two coils A and B as shown in figure. A current starts flowing in B as shown, when A is moved towards B and stops when A stops moving. The current in A is counterclockwise. B is kept stationary when A moves. We can infer that ______.


Same as problem 4 except the coil A is made to rotate about a vertical axis (figure). No current flows in B if A is at rest. The current in coil A, when the current in B (at t = 0) is counterclockwise and the coil A is as shown at this instant, t = 0, is ______.


A solenoid is connected to a battery so that a steady current flows through it. If an iron core is inserted into the solenoid, will the current increase or decrease? Explain.


A conducting wire XY of mass m and neglibile resistance slides smoothly on two parallel conducting wires as shown in figure. The closed circuit has a resistance R due to AC. AB and CD are perfect conductors. There is a ˆ. magnetic field `B = B(t)hatk`.

  1. Write down equation for the acceleration of the wire XY.
  2. If B is independent of time, obtain v(t) , assuming v(0) = u0.
  3. For (b), show that the decrease in kinetic energy of XY equals the heat lost in R.

Predict the direction of induced current in the situation described by the following figure.


Predict the direction of induced current in the situation described by the following figure.


Predict the direction of induced current in the situation described by the following figure.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×