Advertisements
Advertisements
प्रश्न
Use the given figure to find the value of x in terms of y. Calculate x, if y = 15°.
उत्तर
(2x - y)° = (x + 5)° + (2y + 25)° ....(Exterior angle property)
⇒ 2x° - y° = x° + 5° + 2y° + 25°
⇒ 2x° - x° = 2y° + y° + 30°
⇒ x° = 3y° + 30°
When y = 15, we have
x° = 3 x 15° + 30° = 45° + 30° = 75°.
APPEARS IN
संबंधित प्रश्न
The exterior angles, obtained on producing the side of a triangle both ways, are 100° and 120°. Find all the angles of the triangle.
In a triangle PQR, ∠P + ∠Q = 130° and ∠P + ∠R = 120°. Calculate each angle of the triangle.
The angles of a triangle are (x + 10)°, (x + 30)° and (x - 10)°. Find the value of 'x'. Also, find the measure of each angle of the triangle.
Use the given figure to show that: ∠p + ∠q + ∠r = 360°.
In a triangle ABC. If D is a point on BC such that ∠CAD = ∠B, then prove that: ∠ADC = ∠BAC.
If bisectors of angles A and D of a quadrilateral ABCD meet at 0, then show that ∠B + ∠C = 2 ∠AOD
If each angle of a triangle is less than the sum of the other two angles of it; prove that the triangle is acute-angled.
If the angles of a triangle are in the ratio 2: 4: 6; show that the triangle is a right-angled triangle.
In a triangle, the sum of two angles is 139° and their difference is 5°; find each angle of the triangle.
In a right-angled triangle ABC, ∠B = 90°. If BA and BC produced to the points P and Q respectively, find the value of ∠PAC + ∠QCA.