Advertisements
Advertisements
प्रश्न
What is the cumulative frequency of the modal class of the following distribution?
Class | 3 – 6 | 6 – 9 | 9 – 12 | 12 – 15 | 15 – 18 | 18 – 21 | 21 – 24 |
Frequency |
7 | 13 | 10 | 23 | 54 | 21 | 16 |
उत्तर
Here the maximum class frequency is 23, and the class corresponding to this frequency is 12-15.
So, the modal class is 12.15.
Now, to find the cumulative frequency let us put the data in the table given below:
Class | Frequency` (f_i)` | Cumulative frequency (𝑐𝑓) |
3-6 | 7 | 7 |
6-9 | 13 | 20 |
9-12 | 10 | 30 |
12-15 | 23 | 53 |
15-18 | 4 | 5 |
18-21 | 21 | 78 |
21-24 | 16 | 94 |
Total | `N= Σf_i=94` |
Thus, the cumulative frequency of the modal class is 53.
APPEARS IN
संबंधित प्रश्न
Find the median of the following data by making a ‘less than ogive’.
Marks | 0 - 10 | 10-20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80-90 | 90-100 |
Number of Students | 5 | 3 | 4 | 3 | 3 | 4 | 7 | 9 | 7 | 8 |
The given distribution shows the number of wickets taken by the bowlers in one-day international cricket matches:
Number of Wickets | Less than 15 | Less than 30 | Less than 45 | Less than 60 | Less than 75 | Less than 90 | Less than 105 | Less than 120 |
Number of bowlers | 2 | 5 | 9 | 17 | 39 | 54 | 70 | 80 |
Draw a ‘less than type’ ogive from the above data. Find the median.
Write the median class of the following distribution:
Class | 0 – 10 | 10 -20 | 20- 30 | 30- 40 | 40-50 | 50- 60 | 60- 70 |
Frequency | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
What is the lower limit of the modal class of the following frequency distribution?
Age (in years) | 0 - 10 | 10- 20 | 20 -30 | 30 – 40 | 40 –50 | 50 – 60 |
Number of patients | 16 | 13 | 6 | 11 | 27 | 18 |
The following table gives the life-time (in days) of 100 electric bulbs of a certain brand.
Life-tine (in days) | Less than 50 |
Less than 100 |
Less than 150 |
Less than 200 |
Less than 250 |
Less than 300 |
Number of Bulbs | 7 | 21 | 52 | 9 | 91 | 100 |
Calculate the missing frequency form the following distribution, it being given that the median of the distribution is 24
Age (in years) | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Number of persons |
5 | 25 | ? | 18 | 7 |
Write the median class for the following frequency distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 |
Frequency: | 5 | 8 | 7 | 12 | 28 | 20 | 10 | 10 |
The marks obtained by 100 students of a class in an examination are given below.
Mark | No. of Student |
0 - 5 | 2 |
5 - 10 | 5 |
10 - 15 | 6 |
15 - 20 | 8 |
20 - 25 | 10 |
25 - 30 | 25 |
30 - 35 | 20 |
35 - 40 | 18 |
40 - 45 | 4 |
45 - 50 | 2 |
Draw 'a less than' type cumulative frequency curves (ogive). Hence find the median.
Consider the following distribution:
Marks obtained | Number of students |
More than or equal to 0 | 63 |
More than or equal to 10 | 58 |
More than or equal to 20 | 55 |
More than or equal to 30 | 51 |
More than or equal to 40 | 48 |
More than or equal to 50 | 42 |
The frequency of the class 30 – 40 is:
The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:
Age (in years) | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 |
Number of patients | 60 | 42 | 55 | 70 | 53 | 20 |
Form: More than type cumulative frequency distribution.