Advertisements
Advertisements
प्रश्न
The following table gives the life-time (in days) of 100 electric bulbs of a certain brand.
Life-tine (in days) | Less than 50 |
Less than 100 |
Less than 150 |
Less than 200 |
Less than 250 |
Less than 300 |
Number of Bulbs | 7 | 21 | 52 | 9 | 91 | 100 |
उत्तर
The frequency distribution is as follows:
Life-time (in days) | Frequency (f) |
0-50 | 7 |
50-100 | 14 |
100-150 | 31 |
150-200 | 27 |
200-250 | 12 |
250-300 | 9 |
APPEARS IN
संबंधित प्रश्न
Find the median of the following data by making a ‘less than ogive’.
Marks | 0 - 10 | 10-20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80-90 | 90-100 |
Number of Students | 5 | 3 | 4 | 3 | 3 | 4 | 7 | 9 | 7 | 8 |
The heights of 50 girls of Class X of a school are recorded as follows:
Height (in cm) | 135 - 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 | 160 – 165 |
No of Students | 5 | 8 | 9 | 12 | 14 | 2 |
Draw a ‘more than type’ ogive for the above data.
The table given below shows the weekly expenditures on food of some households in a locality
Weekly expenditure (in Rs) | Number of house holds |
100 – 200 | 5 |
200- 300 | 6 |
300 – 400 | 11 |
400 – 500 | 13 |
500 – 600 | 5 |
600 – 700 | 4 |
700 – 800 | 3 |
800 – 900 | 2 |
Draw a ‘less than type ogive’ and a ‘more than type ogive’ for this distribution.
What is the lower limit of the modal class of the following frequency distribution?
Age (in years) | 0 - 10 | 10- 20 | 20 -30 | 30 – 40 | 40 –50 | 50 – 60 |
Number of patients | 16 | 13 | 6 | 11 | 27 | 18 |
If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | Total |
Frequency | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
The marks obtained by 100 students of a class in an examination are given below.
Mark | No. of Student |
0 - 5 | 2 |
5 - 10 | 5 |
10 - 15 | 6 |
15 - 20 | 8 |
20 - 25 | 10 |
25 - 30 | 25 |
30 - 35 | 20 |
35 - 40 | 18 |
40 - 45 | 4 |
45 - 50 | 2 |
Draw 'a less than' type cumulative frequency curves (ogive). Hence find the median.
Calculate the mean of the following frequency distribution :
Class: | 10-30 | 30-50 | 50-70 | 70-90 | 90-110 | 110-130 |
Frequency: | 5 | 8 | 12 | 20 | 3 | 2 |
Consider the following distribution:
Marks obtained | Number of students |
More than or equal to 0 | 63 |
More than or equal to 10 | 58 |
More than or equal to 20 | 55 |
More than or equal to 30 | 51 |
More than or equal to 40 | 48 |
More than or equal to 50 | 42 |
The frequency of the class 30 – 40 is:
Look at the following table below.
Class interval | Classmark |
0 - 5 | A |
5 - 10 | B |
10 - 15 | 12.5 |
15 - 20 | 17.5 |
The value of A and B respectively are?
Form the frequency distribution table from the following data:
Marks (out of 90) | Number of candidates |
More than or equal to 80 | 4 |
More than or equal to 70 | 6 |
More than or equal to 60 | 11 |
More than or equal to 50 | 17 |
More than or equal to 40 | 23 |
More than or equal to 30 | 27 |
More than or equal to 20 | 30 |
More than or equal to 10 | 32 |
More than or equal to 0 | 34 |