हिंदी

What will be the effect on the position of zero deflection if only the current flowing through the potentiometer wire is decreased. - Physics

Advertisements
Advertisements

प्रश्न

What will be the effect on the position of zero deflection if only the current flowing through the potentiometer wire is decreased?

टिप्पणी लिखिए

उत्तर

The potential gradient along the wire will decrease as the current through the potentiometer wire is reduced. Hence, the position of zero deflection will occur at a longer length.

`"E"_1 = ("IR"/"L")"l"_1` = constant.

shaalaa.com
Potentiometer
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Current Electricity - Exercises [पृष्ठ २२८]

APPEARS IN

बालभारती Physics [English] 12 Standard HSC Maharashtra State Board
अध्याय 9 Current Electricity
Exercises | Q 2. xiii) (ii) | पृष्ठ २२८

संबंधित प्रश्न

State the principle of working of a potentiometer.


Accuracy of potentiometer can be easily increased by ______.


State the advantages of potentiometer over voltmeter.


In a potentiometer experiment, balancing length is found to be 120 cm for a cell E1 of emf 2V. What will be the balancing length for another cell E2 of emf 1.5V? (No other changes are made in the experiment.)


In the given circuit, with steady current, calculate the potential drop across the capacitor and the charge stored in it.


Figure shows a long potentiometer wire AB having a constant potential gradient. The null points for the two primary cells of emfs ε1 and ε2 connected in the manner shown are obtained at a distance of l1 = 120 cm and l2 = 300 cm from the end A. Determine (i) ε12 and (ii) position of null point for the cell ε1 only.


Write two possible causes for one sided deflection in a potentiometer experiment.


The potentiometer wire AB shown in the figure is 50 cm long. When AD = 30 cm, no deflection occurs in the galvanometer. Find R.


Figure below shows two resistors R1 and R2 connected to a battery having an emf of 40V and negligible internal resistance. A voltmeter having a resistance of. 300 Ω is used to measure the potential difference across R1 Find the reading of the voltmeter.


Draw a labelled circuit diagram of a potentiometer to compare emfs of two cells. Write the working formula (Derivation not required).


A student uses the circuit diagram of a potentiometer as shown in the figure
(a) for a steady current I passing through the potentiometer wire, he gets a null point for the cell ε1. and not for ε2. Give the reason for this observation and suggest how this difficulty can be resolved.

(b) What is the function of resistance R used in the circuit? How will the change in its value affect the null point?

(c) How can the sensitivity of the potentiometer be increased?


Define or describe a Potentiometer.


Define potential gradient of the potentiometer wire.


Distinguish between a potentiometer and a voltmeter.


What will be the effect on the position of zero deflection if only the current flowing through the potentiometer wire is increased?


A battery of emf 4 volt and internal resistance 1 Ω is connected in parallel with another battery of emf 1 V and internal resistance 1 Ω (with their like poles connected together). The combination is used to send current through an external resistance of 2 Ω. Calculate the current through the external resistance.


A potential drop per unit length along a wire is 5 × 10−3 V/m. If the emf of a cell balances against length 216 cm of this potentiometer wire, find the emf of the cell.


Describe how a potentiometer is used to compare the emf's of two cells by the combination method.


Why is a potentiometer preferred over a voltmeter for measuring emf?


The emf of a cell is balanced by a length of 120 cm of a potentiometer wire. When the cell is shunted by a resistance of 10 Ω, the balancing length is reduced by 20 cm. Find the internal resistance of the cell.


State any one use of a potentiometer.


Which of the following instruments is not a direct reading instrument?


A potentiometer is an ideal device for measuring potential difference because ______.


When two cells of e.m.f 1.5 V and 1.1 V connected in series are balanced on a potentiometer, the balancing length is 260 cm. The balancing length, when they are connected in opposition is (in cm) ____________.


In the given figure, battery E is balanced on 55 cm length of potentiometer wire but when a resistance of 10 `Omega` is connected in parallel with the battery, then it balances on 50 cm length of the potentiometer wire. The internal resistance r of the battery is ____________.


A potentiometer is used to measure the potential difference between A and B, the null point is obtained at 0.9 m. Now the potential difference between A and C is measured, the null point is obtained at 0.3 m. The ratio `E_2/E_1` is (E1 > E2) ______

 


A wire has a length of 2m and a resistance of 10Ω. It is connected in series with a resistance of 990Ω and a cell of e.m.f. 2V. The potential gradient along the wire will be ______


If the length of potentiometer wire is increased, then the length of the previously obtained balance point will ______.


In a potentiometer experiment when three cells A, B, C are connected in series the balancing length is found to be 740 cm. If A and B are connected in series, the balancing length is 440 cm and when B and C are connected in series, it is 540 cm. The e.m.f. of A, B, and C cells EA, EB, EC are respectively (in volt) ______


It is observed in a potentiometer experiment that no current passes through the galvanometer when the terminals of the cell are connected across a certain length of the potentiometer wire. On shunting the cell by a 2 Ω resistance, the balancing length is reduced to half. The internal resistance of the cell is ______.


The sensitivity of the potentiometer can be increased by ______.


Potentiometer measures potential more accurately because _________.

In potentiometer a balance point is obtained, when ______.

In a potentiometer of 10 wires, the balance point is obtained on the 7th wire. To shift the balance point to 9th wire, we should ______.


The best instrument for accurate measurement of EMF of a cell is ____________.


A 10 m long wire of uniform cross-section and 20 Ω resistance is used in a potentiometer. The wire is connected in series with a battery of 5 V along with an external resistance of 480 Ω. If an unknown emf E is balanced at 6.0 m length of the wire, then the value of unknown emf is ______.


The conductivity of super - conductor is


The value of current I in the network shown in fig.


1°C rise in temperature is observed in a conductor by passing a certain current. If the current is double then the rise in temperature is approximately.


The instrument among the following which measures the e.m.f of a cell most accurately is ______


In a potentiometer circuit, a cell of EMF 1.5 V gives balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell, then at what length of the wire, the balance point occurs?


AB is a potentiometer wire (Figure). If the value of R is increased, in which direction will the balance point J shift?


For the circuit shown, with R1 = 1.0 Ω, R2 = 2.0 Ω, E1 = 2 V, and E2 = E3 = 4 V, the potential difference between the points 'a' and 'b' is approximately (in V) ______.


As a cell age, its internal resistance increases. A voltmeter of resistance 270 Ω connected across an old dry cell reads 1.44 V. However, a potentiometer at the balance point gives a voltage measurement of the cell as 1.5 V. Internal resistance of the cell is ______ Ω.


In potentiometer experiment, null point is obtained at a particular point for a cell on potentiometer wire x cm long. If the length of the potentiometer wire is increased without changing the cell, the balancing length will ______. (Driving source is not changed) 


In balanced meter bridge, the resistance of bridge wire is 0.1 Ω cm. Unknown resistance X is connected in left gap and 6 Ω in right gap, null point divides the wire in the ratio 2:3. Find the current drawn from the battery of 5 V having negligible resistance.


The emf of the cell of internal resistance 1.275 Ω balances against a length of 217 cm of a potentiometer wire. Find the balancing length when the cell is shunted by a resistance of 15 Ω.


What will a voltmeter of resistance 200 Ω read when connected across a cell of emf 2 V and internal resistance 2 Ω?


A particle carrying 8 electron charges starts from rest and is accelerated through a potential difference of 9000 V. Calculate the KE acquired by it in keV.


Draw a neat labelled diagram of Internal resistance of a cell using a potentiometer.


In a potentiometer, a cell is balanced against 110 cm when the circuit is open. A cell is balanced at 100 cm when short-circuited through a resistance of 10 Ω. Find the internal resistance of the cell.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×