Advertisements
Advertisements
प्रश्न
Write the lowest rationalising factor of : 3√2 + 2√3
उत्तर
3√2 + 2√3
= ( 3√2 + 2√3 )( 3√2 - 2√3 )
= ( 3√2)2 - (2√3)2
= 9 x 2 - 4 x 3
= 18 - 12
= 6
its lowest rationalizing factor is 3√2 - 2√3.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : √24
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If x = 5 - 2√6, find `x^2 + 1/x^2`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`