Advertisements
Advertisements
प्रश्न
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
उत्तर
`(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2)) = ((5sqrt(3) + sqrt(2))(sqrt(3) - sqrt(2)))/((sqrt(3) + sqrt(2))(sqrt(3) - sqrt(2))`
= `(5(3) - 5sqrt(3) xx sqrt(2) + (sqrt(2)sqrt(3) - (2)))/((sqrt(3))^2 - (sqrt(2))^2`
= `(15 - 5sqrt(6) + sqrt(6) - 2)/(3 - 2)`
= `(13 - 4sqrt(6))/1`
= `13 - 4sqrt(6)`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : √24
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`