Advertisements
Advertisements
प्रश्न
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
उत्तर
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)) = ((2sqrt(6) - sqrt(5))(3sqrt(5) + 2sqrt(6)))/((3sqrt(5) - 2sqrt(6))(3sqrt(5) + 2sqrt(6))`
= `(6sqrt(6 xx 5) + 4 xx sqrt(6 xx 6) - sqrt(5) xx 3sqrt(5) - 2 xx sqrt(5 xx 6))/((3sqrt(5))^2 - (2sqrt(6))^2`
= `(6sqrt(30) + 4 xx 6 - 3 xx 5 - 2sqrt(30))/(45 - 24)`
= `(sqrt(30)(6 - 2) + 24 - 15)/21`
= `(9 + 4sqrt(30))/21`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of : √24
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).