Advertisements
Advertisements
प्रश्न
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
उत्तर
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)) = ((2sqrt(6) - sqrt(5))(3sqrt(5) + 2sqrt(6)))/((3sqrt(5) - 2sqrt(6))(3sqrt(5) + 2sqrt(6))`
= `(6sqrt(6 xx 5) + 4 xx sqrt(6 xx 6) - sqrt(5) xx 3sqrt(5) - 2 xx sqrt(5 xx 6))/((3sqrt(5))^2 - (2sqrt(6))^2`
= `(6sqrt(30) + 4 xx 6 - 3 xx 5 - 2sqrt(30))/(45 - 24)`
= `(sqrt(30)(6 - 2) + 24 - 15)/21`
= `(9 + 4sqrt(30))/21`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Rationalize the denominator.
`11 / sqrt 3`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).