Advertisements
Advertisements
प्रश्न
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
उत्तर
`sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2) = sqrt(5)(1/(sqrt(6) + 2) - 1/(sqrt(6) - 2))`
= `sqrt(5)[(sqrt(6) - 2 - (sqrt(6) + 2))/((sqrt(6) + 2)(sqrt(6) - 2))]`
= `sqrt(5)[(sqrt(6) - 2 - sqrt(6) - 2)/((sqrt(6))^2 - 2^2)]`
= `sqrt(5)((-4)/(6 - 4))`
= `sqrt(5)((-4)/2)`
= `sqrt(5) xx -2`
= `-2 sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`11 / sqrt 3`
Write the lowest rationalising factor of : √24
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator `5/(3sqrt(5))`