Advertisements
Advertisements
प्रश्न
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
उत्तर
L.H.S = `1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2]`
= `1/[ 3 - √8 ] - 1/[ √8 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2]`
= `1/[ 3 - √8 ] xx [ 3 + √8 ]/[ 3 + √8 ] - 1/[ √8 - √7 ] xx [ √8 + √7 ]/[ √8 + √7 ]+ 1/[ √7 - √6 ] xx [ √7 + √6 ]/[ √7 + √6 ] - 1/[ √6 - √5 ] xx [ √6 + √5 ]/[ √6 + √5 ] + 1/[√5 - 2] xx [ √5 + 2 ]/[ √5 + 2 ]`
= `[ 3 + √8 ]/[(3)^2 - (√8)^2] - [ √8 + √7 ]/[ (√8)^2 - (√7)^2 ] + [ √7 + √6 ]/[ (√7)^2 - (√6)^2 ] - [ √6 - √5 ]/[ (√6)^2 - (√5)^2] + [√5 - 2]/[ (√5)^2 - (2)^2 ]`
= `[ 3 + √8 ]/[ 9 - 8 ] - [√8 + √7]/[8 - 7] + [ √7 + √6 ]/[ 7 - 6 ] - [ √6 - √5 ]/[ 6 - 5 ] + [√5 - 2]/[ 5 - 4 ]`
= 3 + √8 - √8 - √7 + √7 + √6 - √6 - √5 + √5 + 2
= 3 + 2
= 5
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`6/(9sqrt 3)`
Write the lowest rationalising factor of : √24
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 3√2 + 2√3
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If x = 1 - √2, find the value of `( x - 1/x )^3`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`