मराठी

Rationalise the denominator of 1√3-√2+1 - Mathematics

Advertisements
Advertisements

प्रश्न

Rationalise the denominator of `1/[ √3 - √2 + 1]`

बेरीज

उत्तर

`1/[ √3 - √2 + 1]`

= `1/[(√3 - √2) + 1] xx [(√3 - √2) - 1]/[(√3 - √2) - 1]`

= `(√3 - √2 - 1)/[(√3 - √2)^2 - (1)^2]`

= `(√3 - √2 - 1)/[(√3)^2 - 2√6 + (√2)^2 - 1 ]`

= `(√3 - √2 - 1)/(3 - 2√6 + 2 - 1)`

= `(√3 - √2 - 1)/( 4 - 2√6 )`

= `[(√3 - √2) - 1]/[2( 2 - √6 )]`

= `[ √3 - √2 - 1 ]/[ 2( 2 - √6 ) ] xx [ 2 + √6 ]/[ 2 + √6 ]`

= `[ 2√3 - 2√2 - 2 + √18 - √12 - √6 ]/[ 2[ (2)^2 - ( √6)^2 ] ]`

= `[ 2√3 - 2√2 - 2 + 3√2 - 2√3 - √6 ]/[ 2[ 4 - 6] ]`

= `[ √2 - 2 - √6 ]/[ 2(-2) ]`

= `[ √2 - 2 - √6 ]/[ -4 ]`

= `1/4(2 + √6 - √2)`

shaalaa.com
Simplifying an Expression by Rationalization of the Denominator
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Rational and Irrational Numbers - Exercise 1 (C) [पृष्ठ २२]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 1 Rational and Irrational Numbers
Exercise 1 (C) | Q 12 | पृष्ठ २२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×