Advertisements
Advertisements
प्रश्न
Rationalise the denominator of `1/[ √3 - √2 + 1]`
उत्तर
`1/[ √3 - √2 + 1]`
= `1/[(√3 - √2) + 1] xx [(√3 - √2) - 1]/[(√3 - √2) - 1]`
= `(√3 - √2 - 1)/[(√3 - √2)^2 - (1)^2]`
= `(√3 - √2 - 1)/[(√3)^2 - 2√6 + (√2)^2 - 1 ]`
= `(√3 - √2 - 1)/(3 - 2√6 + 2 - 1)`
= `(√3 - √2 - 1)/( 4 - 2√6 )`
= `[(√3 - √2) - 1]/[2( 2 - √6 )]`
= `[ √3 - √2 - 1 ]/[ 2( 2 - √6 ) ] xx [ 2 + √6 ]/[ 2 + √6 ]`
= `[ 2√3 - 2√2 - 2 + √18 - √12 - √6 ]/[ 2[ (2)^2 - ( √6)^2 ] ]`
= `[ 2√3 - 2√2 - 2 + 3√2 - 2√3 - √6 ]/[ 2[ 4 - 6] ]`
= `[ √2 - 2 - √6 ]/[ 2(-2) ]`
= `[ √2 - 2 - √6 ]/[ -4 ]`
= `1/4(2 + √6 - √2)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`