Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
उत्तर
`1/(3 sqrt 5 + 2 sqrt 2)`
`= 1/((3 sqrt 5 + 2 sqrt 2)) xx ((3 sqrt 5 - 2 sqrt 2))/((3 sqrt 5 - 2 sqrt 2))`
` = ((3 sqrt 5 - 2 sqrt 2))/((3sqrt5)^2 - (2sqrt 2)^2)
...[(a+b)(a-b) = a^2 - b^2]`
`= ((3 sqrt5 - 2 sqrt 2))/(45-8)`
`= (3 sqrt5 - 2 sqrt 2)/37`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Draw a line segment of length `sqrt8` cm.
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`