Advertisements
Advertisements
Question
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Solution
`1/(3 sqrt 5 + 2 sqrt 2)`
`= 1/((3 sqrt 5 + 2 sqrt 2)) xx ((3 sqrt 5 - 2 sqrt 2))/((3 sqrt 5 - 2 sqrt 2))`
` = ((3 sqrt 5 - 2 sqrt 2))/((3sqrt5)^2 - (2sqrt 2)^2)
...[(a+b)(a-b) = a^2 - b^2]`
`= ((3 sqrt5 - 2 sqrt 2))/(45-8)`
`= (3 sqrt5 - 2 sqrt 2)/37`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
Using the following figure, show that BD = `sqrtx`.