Advertisements
Advertisements
Question
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Solution
`[ 2 - √3 ]/[ 2 + √3 ] xx [ 2 - √3 ]/[ 2 - √3 ]`
= `[( 2 - √3 )^2]/[(2)^2 - (√3)^2] = [ 4 + 3 - 4√3]/[ 4 - 3 ]`
= `[ 7 - 4√3 ]/1`
= 7 - 4√3
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Draw a line segment of length `sqrt8` cm.