Advertisements
Advertisements
Question
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
Solution
`(1)/(sqrt(5) - sqrt(3)`
= `(1)/(sqrt(5) - sqrt(3)) xx (sqrt(5) + sqrt(3))/(sqrt(5) + sqrt(3)`
= `(sqrt(5) + sqrt(3))/((sqrt(5))^2 - (sqrt(3))^2`
= `(sqrt(5) + sqrt(3))/(5 - 3)`
= `(sqrt(5) + sqrt(3))/(2)`
= `(1)/(2)sqrt(5) + (1)/(2)sqrt(3)`
= `(1)/(2)sqrt(5) - (-1/2)sqrt(3)`
= `"a"sqrt(5) - "b"sqrt(3)`
Hence, a = `(1)/(2)` and b = `-(1)/(2)`.
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/sqrt5`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Draw a line segment of length `sqrt8` cm.
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`
Using the following figure, show that BD = `sqrtx`.