Advertisements
Advertisements
Question
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
Solution
`(5 + 2sqrt(3))/(7 + 4sqrt(3)`
= `(5 + 2sqrt(3))/(7 + 4sqrt(3)) xx (7 - 4sqrt(3))/(7 - 4sqrt(3)`
= `(5(7 - 4sqrt(3)) + 2sqrt(3)(7 - 4sqrt(3)))/((7)^2 - (4sqrt(3))^2`
= `(35 - 20sqrt(3) + 14sqrt(3) - 24)/(49 - 48)`
= `(11 - 6sqrt(3))/(1)`
= `11 + (-6)sqrt(3)`
= `"a" + "b"sqrt(3)`
Hence, a = 11 and b = -6
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Draw a line segment of length `sqrt5` cm.
Draw a line segment of length `sqrt3` cm.