Advertisements
Advertisements
Question
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Solution
`[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ] xx [ 2√5 + 3√2 ]/[ 2√5 + 3√2 ]`
= `[( 2sqrt5 + 3sqrt2)^2]/[ (2sqrt5)^2 - (3sqrt2)^2]`
= `[ 4 xx 5 + 9 xx 2 + 12sqrt10 ]/[ 20 -18 ]`
= `[ 20 + 18 + 12sqrt10 ]/2`
= `[ 38 + 12sqrt10 ]/2`
= `[2( 19 + 6sqrt10 )]/2`
= 19 + 6√10
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`