Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
उत्तर
`[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ] xx [ 2√5 + 3√2 ]/[ 2√5 + 3√2 ]`
= `[( 2sqrt5 + 3sqrt2)^2]/[ (2sqrt5)^2 - (3sqrt2)^2]`
= `[ 4 xx 5 + 9 xx 2 + 12sqrt10 ]/[ 20 -18 ]`
= `[ 20 + 18 + 12sqrt10 ]/2`
= `[ 38 + 12sqrt10 ]/2`
= `[2( 19 + 6sqrt10 )]/2`
= 19 + 6√10
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Draw a line segment of length `sqrt8` cm.