Advertisements
Advertisements
प्रश्न
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
उत्तर
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
= `((4 + sqrt(5))^2 + (4 - sqrt(5))^2)/((4 - sqrt(5))(4 + sqrt(5))`
= `(16 + 5 + 8sqrt(5) + 16 + 5 - 8sqrt(5))/(16 - 5)`
= `(42)/(11)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Using the following figure, show that BD = `sqrtx`.