Advertisements
Advertisements
प्रश्न
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
उत्तर
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
= `(3(5 + sqrt(3)) + 2(5 - sqrt(3)))/((5 - sqrt(3))(5 + sqrt(3))`
= `(15 + 3sqrt(3) + 10 - 2sqrt(3))/((5)^2 - (sqrt(3))^2`
= `(25 + sqrt(3))/(25 - 3)`
= `(25 + sqrt(3))/(22)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Show that Negative of an irrational number is irrational.