Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
उत्तर
`(sqrt(15) + 3)/(sqrt(15) - 3)`
= `(sqrt(15) + 3)/(sqrt(15) - 3) xx (sqrt(15) + 3)/(sqrt(15) + 3)`
= `(sqrt(15) + 3)^2/((sqrt(15))^2 - (3)^2`
= `(15 + 9 + 6sqrt(15))/(15 - 9)`
= `(24 + 6sqrt(15))/(6)`
= 4 + `sqrt(15)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Draw a line segment of length `sqrt3` cm.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`