Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
उत्तर
`(sqrt(3) + 1)/(sqrt(3) - 1)`
= `(sqrt(3) + 1)/(sqrt(3) - 1) xx (sqrt(3) + 1)/(sqrt(3) + 1)`
= `(sqrt(3) + 1)^2/((sqrt(3))^2 - (1)^2)`
= `((sqrt(3))^2 + 2 xx sqrt(3) xx 1 + (1)^2)/(3 - 1)`
= `(3 + 2sqrt(3) + 1)/(2)`
= `(4 + 2sqrt(3))/(2)`
= 2 + `sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Draw a line segment of length `sqrt3` cm.