Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
उत्तर
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
= `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)) xx (3sqrt(5) + 2sqrt(6))/(3sqrt(5) + 2sqrt(6)`
= `(6sqrt(30) + 24 - 15 - 2sqrt(30))/((3sqrt(5))^2 - (2sqrt(6))^2`
= `(6sqrt(30) + 9 - 2sqrt(30))/(45 - 24)`
= `(4sqrt(30) + 9)/(21)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Draw a line segment of length `sqrt3` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`