Advertisements
Advertisements
प्रश्न
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
उत्तर
x = `7 + 4sqrt(3)`
∴ `(1)/x = (1)/(7 + 4sqrt(3))`
= `(1)/(7 + 4sqrt(3)) xx (7 - 4sqrt(3))/(7 - 4sqrt(3))`
= `(7 - 4sqrt(3))/(7^2 - (4sqrt(3))^2`
= `(7 - 4sqrt(3))/(49 - 48)`
= `(7 - 4sqrt(3))/(1)`
= `7 - 4sqrt(3)`
∴ `x + (1)/x `
= `(7 + 4sqrt(3)) + (7 - 4sqrt(3))`
= `7 + 4sqrt(3) + 7 - 4sqrt(3)`
= 14
Hence, `(x + (1)/x)^2`
= (14)2
= 196
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Draw a line segment of length `sqrt8` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`