Advertisements
Advertisements
प्रश्न
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
उत्तर
x = `((2 + sqrt(5)))/((2 - sqrt(5))`
= `((2 + sqrt(5)))/((2 - sqrt(5))) xx ((2 + sqrt(5)))/((2 + sqrt(5))`
= `(2 + sqrt(5))^2/(4 - 5)`
= `-(4 + 5 + 4sqrt(5))`
= `-9 -4sqrt(5)`
y = `((2 - sqrt(5)))/((2 + sqrt(5))`
= `((2 - sqrt(5)))/((2 + sqrt(5))) xx ((2 - sqrt(5)))/((2 - sqrt(5))`
= `(2 - sqrt(5))^2/(4 - 5)`
= `-(4 + 5 -4sqrt(5))`
= `-9 + 4sqrt(5)`
∴ x2 - y2 = (x + y) (x - y)
= `(-9 - 4sqrt(5) - 9 + 4sqrt(5))(-9 -4sqrt(5) + 9 - 4sqrt(5))`
= `(-18)(-8sqrt(5))`
= `144sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`