Advertisements
Advertisements
Question
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Solution
x = `((2 + sqrt(5)))/((2 - sqrt(5))`
= `((2 + sqrt(5)))/((2 - sqrt(5))) xx ((2 + sqrt(5)))/((2 + sqrt(5))`
= `(2 + sqrt(5))^2/(4 - 5)`
= `-(4 + 5 + 4sqrt(5))`
= `-9 -4sqrt(5)`
y = `((2 - sqrt(5)))/((2 + sqrt(5))`
= `((2 - sqrt(5)))/((2 + sqrt(5))) xx ((2 - sqrt(5)))/((2 - sqrt(5))`
= `(2 - sqrt(5))^2/(4 - 5)`
= `-(4 + 5 -4sqrt(5))`
= `-9 + 4sqrt(5)`
∴ x2 - y2 = (x + y) (x - y)
= `(-9 - 4sqrt(5) - 9 + 4sqrt(5))(-9 -4sqrt(5) + 9 - 4sqrt(5))`
= `(-18)(-8sqrt(5))`
= `144sqrt(5)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Using the following figure, show that BD = `sqrtx`.