Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Solution
`(3sqrt(2))/sqrt(5)`
= `(3sqrt(2))/sqrt(5) xx sqrt(5)/sqrt(5)`
= `(3sqrt(2) xx sqrt(5))/(sqrt(5))^2`
= `(3sqrt(10))/(5)`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.