Advertisements
Advertisements
Question
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Solution
`(2sqrt3)/sqrt5`
`= (2sqrt3)/sqrt5 xx sqrt5/sqrt5`
`= (2 sqrt(3 xx 5))/(sqrt (5 xx 5))`
`= (2 sqrt(15))/sqrt25`
`= (2 sqrt(15))/5`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`