Advertisements
Advertisements
Question
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Solution
x = `sqrt3 - sqrt2`
`1/x = 1/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2)`
`1/x = (sqrt3 + sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`1/x = (sqrt 3 + sqrt 2)`
(i) `x + 1/x`
`= (sqrt3 - sqrt2) + (sqrt3 + sqrt2)`
`= sqrt3 - cancel(sqrt2) + sqrt3 + cancel(sqrt2)`
`= sqrt3 + sqrt3`
= `2sqrt3`
(ii) `x^2 + 1/x^2`
`= (x + 1/x)^2 - 2 * x * 1/x` ...[a2 + b2 = (a + b)2 - 2ab]
`= (2sqrt3)^2 - 2`
`= 4 xx 3` - 2
= 10
(iii) `x^3 + 1/x^3`
`= (x + 1/x)^3 - 3 * x * 1/x (x + 1/x)` ...[a3 + b3 = (a + b)3 - 3 · a · b (a + b)]
`= (2sqrt3)^3 - 3 xx (2sqrt3)`
`= 8 xx 3sqrt3 - 6sqrt3`
`= 24sqrt3 - 6sqrt3`
`= 18sqrt3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
`= 18sqrt3 - 3(10) + 2sqrt3`
`= 20sqrt3 - 30`
`= 10(2sqrt3 - 3)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Show that Negative of an irrational number is irrational.