Advertisements
Advertisements
Question
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Solution
`sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
= `sqrt( 9 xx 2 )/[5sqrt( 9 xx 2) + 3sqrt( 36 xx 2 ) - 2sqrt( 81 xx 2 )]`
= `(3sqrt2)/( 15sqrt2 + 18sqrt2 - 18sqrt2 )`
= `(3sqrt2)/( 15sqrt2 )`
= `1/5`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `3/sqrt5`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Draw a line segment of length `sqrt5` cm.