Advertisements
Advertisements
Question
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Solution
x =`[ 2 + sqrt5 ]/[ 2 - sqrt5]`
=`[ 2 + sqrt5 ]/[ 2 - sqrt5] xx [ 2 + sqrt5 ]/[ 2 + sqrt5] `
=`[( 2 + sqrt5)^2]/[2^2 - (sqrt5)^2]`
=`( 4 + 4sqrt5 + 5)/(4 - 5)`
=`( 9 + 4sqrt5)/ -1`
= `- ( 9 - 4sqrt5)`
y = `[2 - sqrt5 ]/[ 2 + sqrt5]`
=`[ 2 - sqrt5 ]/[ 2 + sqrt5] xx [ 2 - sqrt5 ]/[ 2 - sqrt5] `
=`[( 2 - sqrt5)^2]/[2^2 - (sqrt5)^2]`
=`( 4 - 4sqrt5 + 5)/(4 - 5)`
=`( 9 - 4sqrt5 )/ -1`
=` - ( 9 + 4sqrt5 )`
∴ ` x^2 - y^2 = ( - 9 - 4sqrt5 )^2 - ( - 9 + 4sqrt5 )^2`
= `81 + 72sqrt5 + 80 - ( 81 - 72sqrt5 + 80)`
= `81 + 72sqrt5 + 80 - 81 + 72sqrt5 - 80`
= `144sqrt5`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3 /sqrt5`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : √13 + 3
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).