Advertisements
Advertisements
Question
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
Solution
n = `1/[ 3 + 2sqrt2 ]`
n = `1/[ 3 + 2sqrt2 ] xx [ 3 - 2sqrt2 ]/[ 3 - 2sqrt2 ]`
n = `[ 3 - 2sqrt2 ]/[ (3)^2 - (2sqrt2)^2 ]`
n = `[ 3 - 2sqrt2 ]/[ 9 - 8 ]`
n = 3 - 2√2
⇒ n2 = ( 3 - 2√2)2
= (3)2 - 2 x 3 x 2√2 + (2√2)2
= 9 - 12√2 + 8
= 17 - 12√2
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt14`
Rationalize the denominator.
`5/sqrt 7`
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 3√2 + 2√3
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2