Advertisements
Advertisements
Question
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
Solution
m = `1/[ 3 - 2sqrt2 ]`
m = `1/[ 3 - 2sqrt2 ] xx [ 3 + 2sqrt2 ]/[ 3 + 2sqrt2 ]`
m = `[ 3 + 2sqrt2 ]/[ (3)^2 - (2sqrt2)^2 ]`
m = `[ 3 + 2sqrt2 ]/[ 9 - 8 ]`
m = 3 +2√2
⇒ m2 = ( 3 + 2√2)2
= (3)2 + 2 x 3 x 2√2 + (2√2)2
= 9 + 12√2 + 8
= 17 + 12√2
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3 /sqrt5`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of √5 - 3.
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).